一元二次方程的解法-公式法课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《一元二次方程的解法-公式法课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一元 二次方程 解法 公式 课件
- 资源描述:
-
1、21.2.2一元二次方程的解法-公式法我们把我们把b2-4ac叫做一元二次方程叫做一元二次方程ax2+bx+c=0(a0)的根的判别式的根的判别式,通常用表示通常用表示.总结提高判别式定理判别式定理当当b2-4ac0时时,方程有两个不相等的实数根方程有两个不相等的实数根当当b2-4ac=0时时,方程有两个相等的实数根方程有两个相等的实数根当当b2-4ac0时时,方程没有实数根方程没有实数根当当b2-4ac0时时,方程有两个实数根方程有两个实数根若方程有两个若方程有两个 不相等的实数根不相等的实数根,则则b2-4ac0 总结提高判别式逆定理判别式逆定理若方程有两个若方程有两个 相等的实数根相等的
2、实数根,则则b2-4ac=0若方程没有实数根若方程没有实数根,则则b2-4ac0若方程有两个若方程有两个 实数根实数根,则则b2-4ac0 一元二次方程根的判别式一元二次方程根的判别式acb42两个不相等实根两个不相等实根两个相等实根两个相等实根无实数根无实数根(1)(2)(3)0=00(4)00两个实数根两个实数根两个不相等实根两个不相等实根两个相等实根两个相等实根无实数根无实数根(1)(2)(3)(4)应用应用1.不解方程判断方程根的情况:不解方程判断方程根的情况:(1)x2-2kx+4(k-1)=0 (k为常数为常数)(2)x2-(2+m)x+2m-1=0 (m为常数为常数)=4(k2-
3、4k+4)=4(k-2)2解:解:=4 k2-16k+16 0方程有两个不等实根方程有两个不等实根解:解:=m2-4m+8=m2-4m+4+4=(m-2)2+4 0方程有实根方程有实根含有字母系数时,将含有字母系数时,将配方后判断配方后判断 1 1、不解方程,判断根的情况、不解方程,判断根的情况.(1)2x2-4x-5=0;(2)x2-(m+1)x+m=0.224(4)4 2(5)bac =56 0方程有两个不相等的实数根;224(1)4 1bacmm 2214mmm 2(1)m当当m-1=0时时,0方程有两个相等的实数根;方程有两个不相等的实数根;当当m-10时时,解:解:2 2、根据方程根
4、的情况,确定待定系数的取值范围、根据方程根的情况,确定待定系数的取值范围.例:k取何值时一元二次方程kx2-2x+3=0有实数根.解:一元二次方程kx2-2x+3=0有实数根.k0,240bac又224(2)43back =4-12k 4-12k 0,解得 当当方程有实数根.13k 且且k0 时时,13k 例例1.用公式法解方程用公式法解方程2x2+5x-3=0解解:a=2,b=5,c=-3,b2-4ac=52-42(-3)=491、把方程化成一般形式。、把方程化成一般形式。并写出并写出a,b,c的值。的值。2、求出、求出b2-4ac的值。的值。x=即即 x1=-3,用公式法解一元二次方用公式
5、法解一元二次方程的一般步骤:程的一般步骤:求根公式求根公式:X=4、写出方程的解:、写出方程的解:x1=?,x2=?3、代入、代入求根公式求根公式:X=(a0,b2-4ac0)(a0,b2-4ac0)x2=填空:用公式法解方程 3x2+5x-2=0 解:a=a=,b=b=,c=c=.b b2 2-4ac=-4ac=.x=x=.=.即 x x1 1=,x,x2 2=.3 35 5-2-25 52 2-4-43 3(-2)(-2)4949-2-2求根公式求根公式:X=1.1.用公式法解下列方程:用公式法解下列方程:(1)x(1)x2 2+2x=5+2x=5(a0,b2-4ac0)612242024
6、20445,2,1052:22xacbcbaxx解61,6121xx例2 用公式法解方程:x x2 2 x-=0 x-=0解:方程两边同乘以3 3,得 2 x2 x2 2-3x-2=0 -3x-2=0 x=x=即 x1=2,x2=-例3 用公式法解方程:x x2 2+3=2 x+3=2 x 解:移项,得x2 2-2 x+3=0-2 x+3=0a=1a=1,b=-2 b=-2 ,c=3c=3b b2 2-4ac=(-2 -4ac=(-2 )2 2-4-41 13=03=0 x=x=x x1 1=x=x2 2=当当 时,一时,一元二次方程有两个相等元二次方程有两个相等的实数根。的实数根。b2-4a
7、c=0a=2,b=-3,c=-2.b2-4ac=(-3)2-42(-2)=25.2.用公式法解下列方程:用公式法解下列方程:(4)(4)4x4x2 2-3x+2=0-3x+2=00212)3(2xx022421,2,:2acbcba解.2221 xx20220)2(x02332942,3,4:2acbcba解.方程没有实数根当当 时,一元时,一元二次方程没有实数根。二次方程没有实数根。b2-4ac0用公式法解一元二次方程的一般步骤:用公式法解一元二次方程的一般步骤:242bbacxa 3、代入求根公式、代入求根公式:2、求出、求出 的值,的值,24bac 1、把方程化成一般形式,并写出、把方程
8、化成一般形式,并写出 的值。的值。a b、c c4、写出方程的解:、写出方程的解:12xx、特别注意特别注意:当当 时时,方程无实数解方程无实数解;240bac.,042根一元二次方程才有实数时当 acb3、练习、练习:用公式法解方程用公式法解方程:x2 2-2 x+2=0.1、方程、方程3 x x2 2+1=2 x+1=2 x中,中,b2-4ac=.2、若关于、若关于x的方程的方程x2-2nx+3n+4=0有两个相等的实数根,则有两个相等的实数根,则n=.动手试一试吧!动手试一试吧!0-1或或408842,22,1:2acbcba解.221 xx202220)22(x1、m取什么值时,方程取
9、什么值时,方程 x2+(2m+1)x+m2-4=0有两个相等的实数解有两个相等的实数解 思考题思考题174164144)4(4)12(4,4,12,1:222222mmmmmmacbmcmba解.417,0174mm得由.,04,4172实数解则原方程有两个相等的时当acbm 思考题思考题2、关于、关于x的一元二次方程的一元二次方程ax2+bx+c=0(a0)。当当a,b,c 满足什么条件时,方程的两根为互为相反数?满足什么条件时,方程的两根为互为相反数?;24,24:,04,0:22212aacbbxaacbbxacba方程的根为时当解,21xx又.,0,0数原方程的两根互为相反时当acb,
10、242422aacbbaacbb,242422aacbbaacbb即,0,0acb此时本节课我有哪些收获?本节课我有哪些收获?我认为本节课的重点是什么?我认为本节课的重点是什么?想一想想一想 记一记记一记 问一问问一问我还有哪些疑点?我还有哪些疑点?课课下下可可要要多多交交流流呦!呦!解一元二次方程时应先化为一般形式,然后利用公式法求得方程的根.这是解一元二次方程的通法.用公式法解一元二次方程时,必须把方程化为一般形式才能正确确定出 a、b、c.在代入公式求解前,要先计算b2-4 a c的值.(1)、若关于、若关于x的一元二次方程的一元二次方程(m-1)x2-2mx+m=0有有两个实数根,则两
展开阅读全文