高三数学 空间点线面之间的位置关系课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高三数学 空间点线面之间的位置关系课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高三数学 空间点线面之间的位置关系课件 数学 空间 点线 之间 位置 关系 课件 下载 _其他_数学_高中
- 资源描述:
-
1、第3课时 空间点、线、面之间的位置关系1平面的基本性质平面的基本性质基础知识梳理基础知识梳理名称名称图示图示文字表示文字表示符号表示符号表示公理公理1如果一条直线如果一条直线上的上的 在一在一个平面内,那个平面内,那么这条直线在么这条直线在此平面内此平面内Al,Bl,且且A,Bl两点两点基础知识梳理基础知识梳理名称名称图示图示文字表示文字表示符号表示符号表示公理公理2过过 上的三点,有且上的三点,有且只有一个平面只有一个平面公理公理3如果两个不重合如果两个不重合的平面有一个公的平面有一个公共点,那么它们共点,那么它们 过过该点的公共直线该点的公共直线P,且,且Pl,且,且Pl不在一条直线不在一
2、条直线有且只有一条有且只有一条2.空间两直线的位置关系空间两直线的位置关系(1)位置关系的分类位置关系的分类基础知识梳理基础知识梳理有且只有一个有且只有一个没有没有没有没有(2)平行公理平行公理公理公理4:平行于同一直线的两:平行于同一直线的两条直线条直线 空间平行线空间平行线的传递性的传递性(3)等角定理等角定理空间中如果两个角的两边分空间中如果两个角的两边分别别 ,那么这两个角相等,那么这两个角相等或互补或互补基础知识梳理基础知识梳理互相平行互相平行对应平行对应平行(4)异面直线所成的角异面直线所成的角设设a、b是异面直线,经过空间任一点是异面直线,经过空间任一点O,分别作直线分别作直线a
3、a,bb,把直线,把直线a与与b所成所成的的 叫做异面直线叫做异面直线a、b所成的所成的角角如果两条异面直线所成的角是如果两条异面直线所成的角是 ,则,则称这两条直线互相垂直称这两条直线互相垂直基础知识梳理基础知识梳理锐角锐角(或直角或直角)直角直角3直线和平面的位置关系直线和平面的位置关系基础知识梳理基础知识梳理位置关系位置关系图示图示符号表符号表示示公共点公共点个数个数直线直线l在平面在平面内内l无数个无数个基础知识梳理基础知识梳理位置关系位置关系图示图示符号表示符号表示公共点个公共点个数数直线直线l与平面与平面相交相交一个一个直线直线l与平面与平面平行平行0个个lAl4.平面与平面的位置
4、关系平面与平面的位置关系基础知识梳理基础知识梳理位置位置关系关系图示图示符号表符号表示示公共点个公共点个数数两平两平面平面平行行两平两平面相面相交交无数个无数个(这这些公共点些公共点均在交线均在交线l上上)al0个个1分别在两个平面内的两条直分别在两个平面内的两条直线的位置关系是线的位置关系是()A异面异面B平行平行C相交相交 D以上都有可能以上都有可能答案:答案:D三基能力强化三基能力强化2已知已知a,b是异面直线,直线是异面直线,直线c直线直线a,则,则c与与b()A一定是异面直线一定是异面直线 B一定是相交直线一定是相交直线C不可能是平行直线不可能是平行直线 D不可能是相交直线不可能是相
5、交直线答案:答案:C三基能力强化三基能力强化3已知已知A、B、C表示不同的点,表示不同的点,l表示直线,表示直线,、表示不同的平面,则表示不同的平面,则下列推理错误的是下列推理错误的是()AAl,A,Bl,BlBA,A,B,BaABCl ,AlA DA,Al,l lA答案:答案:C三基能力强化三基能力强化4.如图所示,在正方体如图所示,在正方体ABCD-A1B1C1D1中,异面直线中,异面直线AC与与B1C1所成的角为所成的角为.5三条直线两两相交,可以确三条直线两两相交,可以确定定_个平面个平面三基能力强化三基能力强化答案:答案:45答案:答案:1或或3证明共线问题:证明共线问题:(1)可由
6、两点连可由两点连一条直线,再验证其他各点均在这一条直线,再验证其他各点均在这条直线上;条直线上;(2)可直接验证这些点都可直接验证这些点都在同一条特定的直线上在同一条特定的直线上两相交两相交平面的唯一交线,关键是通过绘出平面的唯一交线,关键是通过绘出图形,作出两个适当的平面或辅助图形,作出两个适当的平面或辅助平面,证明这些点是这两个平面的平面,证明这些点是这两个平面的公共点公共点课堂互动讲练课堂互动讲练考点一考点一点共线问题点共线问题课堂互动讲练课堂互动讲练如图,在四面体如图,在四面体ABCD中作截面中作截面PQR,PQ、CB的延长线交于的延长线交于M,RQ、DB的延的延长线交于长线交于N,R
7、P、DC的延长线交于的延长线交于K.求求证:证:M、N、K三点共线三点共线【思路点拨思路点拨】要证明要证明M、N、K三点共线,由公理三点共线,由公理3可知,只要证明可知,只要证明M、N、K都在平面都在平面BCD与平面与平面PQR的交的交线上即可线上即可课堂互动讲练课堂互动讲练课堂互动讲练课堂互动讲练M、N、K在平面在平面BCD与平面与平面PQR的交线上,即的交线上,即M、N、K三点共线三点共线课堂互动讲练课堂互动讲练【名师点评名师点评】错误主要出现在错误主要出现在不能正确判断不能正确判断M、N、K所在平面所在平面证明共点问题一般是证明三条证明共点问题一般是证明三条直线交于一点首先证明其中的两直
8、线交于一点首先证明其中的两条直线相交于一点,然后再说明第条直线相交于一点,然后再说明第三条直线是经过这两条直线的两个三条直线是经过这两条直线的两个平面的交线,由公理平面的交线,由公理3可知两个平可知两个平面的公共点必在两个平面的交线上,面的公共点必在两个平面的交线上,即三条直线交于一点即三条直线交于一点课堂互动讲练课堂互动讲练考点二考点二线共点问题线共点问题课堂互动讲练课堂互动讲练如图所示,已知空间四边形如图所示,已知空间四边形ABCD中,中,E、H分别是边分别是边AB、AD的中点,的中点,F、G分别分别三条直线三条直线EF、GH、AC交于一点交于一点【思路点拨思路点拨】先证先证E、F、G、H
9、四点共面,再证四点共面,再证EF、GH交于一点,交于一点,然后证明这一点在然后证明这一点在AC上上课堂互动讲练课堂互动讲练【证明证明】E、H分别是分别是AB、AD的中点,的中点,由公理由公理4知,知,EHFG,且,且EHHG.所以四边形所以四边形EFGH为梯形,设为梯形,设EH与与FG交于点交于点P,则则P平面平面ABD,P平面平面BCD,所以所以P在两平面的交线在两平面的交线BD上,上,所以所以EH、FG、BD三线共点三线共点课堂互动讲练课堂互动讲练证明若干条线证明若干条线(或若干个点或若干个点)共面,一般来共面,一般来说有两种途径:一是首先由题目条件中的部说有两种途径:一是首先由题目条件中
展开阅读全文