常微分方程基本概念讲稿课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《常微分方程基本概念讲稿课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 微分方程 基本概念 讲稿 课件
- 资源描述:
-
1、定义定义 1凡含有未知函数导数凡含有未知函数导数(或微分或微分)的方程的方程,一、微分方程一、微分方程称为称为微分方程微分方程,有时有时简称为方程简称为方程,未知函数是一元,未知函数是一元函数的微分方程函数的微分方程称做常微分方程称做常微分方程,未知函数是多元未知函数是多元函数的微分方程函数的微分方程称做偏微分方程称做偏微分方程.本教材仅讨论常微本教材仅讨论常微分方程,并简称为微分方程分方程,并简称为微分方程.(1)y=kx,k 为常数;为常数;例如,下列方程都是微分方程例如,下列方程都是微分方程(其中其中 y,v,q q 均为均为未知函数未知函数).).(2)(y-2xy)dx+x2 dy=
2、0;(3)mv(t)=mg-kv(t);微分方程中出现的未知函数最高阶导数的阶数,微分方程中出现的未知函数最高阶导数的阶数,称为称为微分方程的阶微分方程的阶.例如,方程例如,方程(1)-(3)为一阶微为一阶微分方程,分方程,通常,通常,n 阶微分方程的一般形式为阶微分方程的一般形式为F(x,y,y,y(n)=0,其中其中 x 是自变量,是自变量,y 是未知函数,是未知函数,F(x,y,y,y(n)是已知函数,是已知函数,而且一定含有而且一定含有 y(n).;112yay (4).,(0sindd22为为常常数数lglgt q qq q(5)方程方程(4)-(5)为二阶微分方程为二阶微分方程.定
3、义定义 2 任何代入微分方程后使其成为恒等式的任何代入微分方程后使其成为恒等式的函数,都叫做该方程的解函数,都叫做该方程的解.二、微分方程的解二、微分方程的解 若微分方程的解中含有若微分方程的解中含有任意常数的个数与方程的阶数相同任意常数的个数与方程的阶数相同,且任意常数之且任意常数之间不能合并,则称此解为该方程的间不能合并,则称此解为该方程的通解通解(或一般解或一般解).当通解中的各任意常数都取特定值时所得到的解,称当通解中的各任意常数都取特定值时所得到的解,称为方程的为方程的特解特解.例如方程例如方程 y =2x 的解的解 y=x2+C 中含有一个任意中含有一个任意常数且与该方程的阶数相同
4、,常数且与该方程的阶数相同,因此,这个解是方程的因此,这个解是方程的通解;通解;如果求满足条件如果求满足条件 y(0)=0 的解,代入通解的解,代入通解 y=x2+C 中,中,得得 C=0,那么,那么 y=x2 就是方程就是方程 y =2x 的特解的特解.二阶微分方程的初始条件是二阶微分方程的初始条件是,|0000yyyyxxxx 及及即即 y(x0)=y0 与与 y(x0)=y 0,一个微分方程与其初始条件构成的问题,称为一个微分方程与其初始条件构成的问题,称为初值问题初值问题.求解某初值问题,就是求方程的特解求解某初值问题,就是求方程的特解.用来确定通解中的任意常数的附加条件一般称用来确定
5、通解中的任意常数的附加条件一般称为初始条件为初始条件.)(,|0000yxyyyxx 即即通常一阶微分方程的初始条件是通常一阶微分方程的初始条件是例例 1 验证函数验证函数 y=3e x xe x 是方程是方程y +2y +y=0的解的解.解解 求求 y=3e x xe x 的导数,的导数,y =-=-4e x+xe-x,y =5e x-xe-x,将将 y,y 及及 y 代入原方程的左边,代入原方程的左边,(5e x-xe-x)+2(-4e x+xe-x)+3e x xe x=0,即函数即函数 y=3e x xe x 满足原方程,满足原方程,得得有有所以该函数是所以该函数是所给二阶微分方程的解
6、所给二阶微分方程的解.得得 C=2,故所,故所求特解为求特解为 y=2x2.例例 2 验证方程验证方程 的通解的通解xyy2 为为 y=Cx2 (C 为为任意常数任意常数),并求满足初始条件并求满足初始条件 y|x=1=2 的特解的特解.解解 由由 y=Cx2 得得y =2Cx,将将 y 及及 y 代入原方程的左、右两边,代入原方程的左、右两边,左边有左边有 y=2Cx,,22Cxxy 而右边而右边所以函数所以函数 y=Cx2 满足原方程满足原方程.又因为该函数含有一个任意常数,又因为该函数含有一个任意常数,所以所以 y=Cx2 是一是一阶微分方程阶微分方程.2的通解的通解xyy 将初始条件将
7、初始条件 y|x=1=2 代入通解,代入通解,例例 3设一个物体从设一个物体从 A 点出发作直线运动,点出发作直线运动,在任一时刻的速度大小为运动时间的两倍在任一时刻的速度大小为运动时间的两倍.求物体求物体运动规律运动规律(或称运动方程或称运动方程)解解首先建立坐标系:取首先建立坐标系:取 A 点为坐标原点,点为坐标原点,物体运动方向为坐标轴的正方向物体运动方向为坐标轴的正方向(如图如图),并设物体并设物体在时刻在时刻 t 到达到达 M 点,其坐标为点,其坐标为 s(t).显然,显然,s(t)是时是时间间 t 的函数,它表示物体的运动规律,是本题中待的函数,它表示物体的运动规律,是本题中待求的
8、未知函数,求的未知函数,s(t)的导数的导数 s(t)就是物体运动的速度就是物体运动的速度 v(t).由题意,知由题意,知v(t)=2t,以及以及s(0)=0.ASOMs(t)因为因为 v(t)=s(t),因此,求物体的运动方程已化,因此,求物体的运动方程已化成了求解初值问题成了求解初值问题 ,0|,2)(0tstts积分后,得通解积分后,得通解 s(t)=t2+C.故初值问题的解为故初值问题的解为 s(t)=t2,也是本题所求的物体的运动方程也是本题所求的物体的运动方程.再将初始条件再将初始条件 代入通解中,得代入通解中,得 C=0,例例 4已知直角坐标系中的一条曲线通过点已知直角坐标系中的
9、一条曲线通过点(1,2),且在该曲线上任一点,且在该曲线上任一点 P(x,y)处的切线斜率处的切线斜率等于该点的纵坐标的平方,求此曲线的方程等于该点的纵坐标的平方,求此曲线的方程.解解 设所求曲线的方程为设所求曲线的方程为 y=y(x),根据导数的根据导数的几何意义及本题所给出的条件,几何意义及本题所给出的条件,y =y2,即即,1dd2yyx 积分得积分得.1Cyx 又由于已知曲线过点又由于已知曲线过点(1,2),代入上式,得,代入上式,得.23 C所以,求此曲线的方程为所以,求此曲线的方程为.123yx 得得一般地,微分方程的每一个解都是一个一元一般地,微分方程的每一个解都是一个一元函数函
10、数 y=y(x),其图形是一条平面曲线,我们称其图形是一条平面曲线,我们称它为微分方程的它为微分方程的积分曲线积分曲线.通解的图形是平面上的通解的图形是平面上的一族曲线,称为一族曲线,称为积分曲线族积分曲线族,特解的图形是积分特解的图形是积分曲线族中的一条确定的曲线曲线族中的一条确定的曲线.这就是微分方程的这就是微分方程的通解与特解的几何意义通解与特解的几何意义.一、可分离变量方程一、可分离变量方程第六章微第六章微 分分 方方 程程第二节一阶微分方程第二节一阶微分方程三、一阶线性微分方程三、一阶线性微分方程二、齐次方程二、齐次方程一阶微分方程的一般形式为一阶微分方程的一般形式为F(x,y,y)
11、=0.一、可分离变量方程一、可分离变量方程例如:形如例如:形如y =f(x)g(y)的微分方程,称为的微分方程,称为可分离变量方程可分离变量方程.(1)分离变量分离变量将方程整理为将方程整理为xxfyygd)(d)(1 使方程各边都只含有一个变量使方程各边都只含有一个变量.的形式,的形式,(2)两边积分两边积分两边同时积分,得两边同时积分,得,d)(1yyg 左边左边.d)(xxf 右边右边故方程通解为故方程通解为.d)(d)(1Cxxfyyg 我们约定在微分方程这一章中不定积分式表示我们约定在微分方程这一章中不定积分式表示被积函数的一个原函数,被积函数的一个原函数,而把积分所带来的任意常而把
12、积分所带来的任意常数明确地写上数明确地写上.例例 1 求方程求方程.1)cos(sin2的通解的通解yxxy 解解分离变量,得分离变量,得,d)cos(sin1d2xxxyy 两边积分,得两边积分,得,)sin(cosarcsinCxxy 这就是所求方程的通解这就是所求方程的通解例例 2 求方程求方程.的通解的通解xyy 解解分离变量,得分离变量,得,d1dxxyy 两边积分,得两边积分,得,1e|1xyC ,1ln|ln1Cxy 化简得化简得.0,1,e2221 CxCyCC则则令令,1e1xyC 另外,另外,y=0 也是方程的解,也是方程的解,因此因此 C2 为任意常数为任意常数xCy2
13、所所以以.xCy 求解过程可简化为:求解过程可简化为:,ddxxyy 两边积分得两边积分得,ln1lnlnCxy 即通解为即通解为,lnlnxCy ,xCy 其中其中 C 为任意常数为任意常数.中的中的 C2 可以为可以为 0,这样,方程的通解是这样,方程的通解是分离变量得分离变量得例例 3 求方程求方程 dx+xydy=y2dx+ydy 满足初始满足初始条件条件 y(0)=2 的特解的特解.解解将方程整理为将方程整理为.d)1(d)1(2xyyxy 分离变量,得分离变量,得,1dd12 xxyyy两边积分,两边积分,有有.ln21)1ln()1ln(212Cxy 化简,得化简,得,)1(12
14、2 xCy即即1)1(22 xCy将初始条件将初始条件 y(0)=2 代入,代入,.1)1(322 xy为所求之通解为所求之通解.得得 C=3.故所求特解为故所求特解为例例 4.)(dd )均均是是正正的的常常数数与与其其中中(的的通通解解求求方方程程akaykyxy 解解分离变量分离变量得得,d)(dxkayyy 即即.dd)11(xkayyay 两边积分,得两边积分,得.lnlnCkaxyay 经整理,得方程的通解为经整理,得方程的通解为,e1kaxCay 也可写为也可写为.e1kaxCay 形如)5.2()(xygdxdy.)(的连续函数是这里uug方程称为齐次方程,求解方法:方程化为引
15、入新变量作变量代换,)(10 xyu,)(xuugdxdu)(udxduxdxdy这里由于解以上的变量分离方程02.30变量还原二、可化为变量分离方程类型二、可化为变量分离方程类型例4求解方程)0(2xyxydxdyx解:方程变形为)0(2xxyxydxdy这是齐次方程,代入得令xyu uu 2即udxdux2将变量分离后得xdxudu2udxdux两边积分得:cxu)ln(即为任意常数ccxcxu,0)ln(,)(ln(2代入原来变量,得原方程的通解为,0)ln(,00)ln(,)ln(2cxcxcxxyxdxudu2例6求下面初值问题的解0)1(,)(22yxdydxyxy解:方程变形为2
16、)(1xyxydxdy这是齐次方程,代入方程得令xyu 21 udxdux将变量分离后得xdxudu21两边积分得:cxuulnln1ln2整理后得cxuu21变量还原得cxxyxy2)(1.1,0)1(cy可定出最后由初始条件故初值问题的解为)1(212xyxdxudu21三、一阶线性微分方程三、一阶线性微分方程一阶微分方程的下列形式一阶微分方程的下列形式)()(xQyxPy 称为一阶线性微分方程,简称称为一阶线性微分方程,简称一阶线性方程一阶线性方程.其中其中P(x)、Q(x)都是自变量的已知连续函数都是自变量的已知连续函数.左边的每项中仅含左边的每项中仅含 y 或或 y,且均为且均为 y
17、 或或 y 的一次项的一次项.它的特点它的特点是:右边是已知函数,是:右边是已知函数,称为一阶线性齐次微分方程,简称称为一阶线性齐次微分方程,简称线性齐次方程线性齐次方程,0,则称方程,则称方程 为一阶线性非齐次微分为一阶线性非齐次微分方程,简称方程,简称线性非齐次方程线性非齐次方程.通常方程通常方程 称为方程称为方程 所对应的线性齐次方程所对应的线性齐次方程.,0)(yxPy若若 Q(x)若若 Q(x)0,则方程成为,则方程成为1.一阶线性齐次方程的解法一阶线性齐次方程的解法一阶线性齐次方程一阶线性齐次方程0)(yxPy是可分离变量方程是可分离变量方程.,d)(dxxPyy 两边积分,得两边
18、积分,得,lnd)(lnCxxPy 所以,方程的通解公式为所以,方程的通解公式为.ed)(xxPCy分离变量,得分离变量,得例例 6 求方程求方程 y +(sin x)y=0 的通解的通解.解解所给方程是一阶线性齐次方程,且所给方程是一阶线性齐次方程,且 P(x)=sin x,,cosdsind)(xxxxxP由通解公式即可得到方程的通解为由通解公式即可得到方程的通解为.ecosxCy 则则例例 7求方程求方程 (y-2xy)dx+x2dy=0 满足初始满足初始条件条件 y|x=1=e 的特解的特解.解解将所给方程化为如下形式:将所给方程化为如下形式:,021dd2 yxxxy这是一个线性齐次
19、方程,这是一个线性齐次方程,,21)(2xxxP 且且则则 ,1lnd12d)(22xxxxxxxP由通解公式得该方程的通解由通解公式得该方程的通解,e12xCxy 将初始条件将初始条件 y(1)=e 代入通解,代入通解,.e12xxy 得得 C=1.故所求特解为故所求特解为2.一阶线性非齐次方程的解法一阶线性非齐次方程的解法设设 y=C(x)y1 是非齐次方程的解,是非齐次方程的解,将将 y=C(x)y1(其中其中 y1 是齐次方程是齐次方程 y +P(x)y=0 的解的解)及其导数及其导数 y =C (x)y1+C(x)y 1 代入方程代入方程).()(xQyxPy 则有则有),()()(
20、)()(111xQyxCxPyxCyxC 即即),()()()(111xQyxPyxCyxC 因因 y1 是对应的线性齐次方程的解,是对应的线性齐次方程的解,因此有因此有,0)(11 yxPy故故),()(1xQyxC 其中其中 y1 与与 Q(x)均为已知函数,均为已知函数,,d)()(1CxyxQxC 代入代入 y=C(x)y1 中,得中,得.d)(111xyxQyCyy 容易验证,上式给出的函数满足线性非齐次方程容易验证,上式给出的函数满足线性非齐次方程),()(xQyxPy 所以可以通过积分所以可以通过积分求得求得且含有一个任意常数,所以它是一阶线性非齐次方程且含有一个任意常数,所以它
21、是一阶线性非齐次方程)()(xQyxPy 的通解的通解在运算过程中,我们取线性齐次方程的一个解为在运算过程中,我们取线性齐次方程的一个解为,ed)(1 xxPy于是,一阶线性非齐次方程的通解公式,就可写成:于是,一阶线性非齐次方程的通解公式,就可写成:.de)(ed)(d)(xxQCyxxPxxP上述讨论中所用的方法,是将常数上述讨论中所用的方法,是将常数 C 变为待定变为待定函数函数 C(x),再通过确定再通过确定 C(x)而求得方程解的方法,而求得方程解的方法,称为称为常数变易法常数变易法.例例 8 求方程求方程 2y -y=ex 的通解的通解.解解法一法一 使用常数变易法求解使用常数变易
22、法求解将所给的方程改写成下列形式:将所给的方程改写成下列形式:,e2121xyy 这是一个线性非齐次方程,它所对应的线性齐次方这是一个线性非齐次方程,它所对应的线性齐次方程的通解为程的通解为,e2xCy 将将 y 及及 y 代入该方程,得代入该方程,得设所给线性非齐次方程的解为设所给线性非齐次方程的解为,e)(2xxCy ,e21e)(2xxxC 于是,有于是,有,ede21)(22CxxCxx 因此,原方程的通解为因此,原方程的通解为.eee)(22xxxCxCy 解法解法二二 运用通解公式求解运用通解公式求解将所给的方程改写成下列形式:将所给的方程改写成下列形式:,e2121xyy ,e2
23、1)(,21)(xxQxP 则则则则 ,2d21d)(xxxxP ,edee21de)(22d)(xxxxxPxxxQ代入通解公式,得原方程的通解为代入通解公式,得原方程的通解为.eee)e(222xxxxCCy ,ee2d)(xxxP 例例 9 求解初值问题求解初值问题 .1)(,cosyxyyx解解使用常数变易法求解使用常数变易法求解将所给的方程改写成下列形式:将所给的方程改写成下列形式:,cos11xxyxy 则与其对应的线性齐次方程则与其对应的线性齐次方程01 yxy的通解为的通解为.xCy 设所给线性非齐次方程的通解为设所给线性非齐次方程的通解为.1)(xxCy 于是,有于是,有 .
24、sindcos)(CxxxxC将将 y 及及 y 代入该方程,得代入该方程,得,cos11)(xxxxC 因此,原方程的通解为因此,原方程的通解为.sin11)(sinxxxCxCxy 将初始条件将初始条件 y()=1 代入,得代入,得 C=,).sin(1xxy 所 以,所 以,所求的特解,即初值问题的解为所求的特解,即初值问题的解为例例 10求方程求方程 y2dx+(x-2xy-y2)dy=0 的通解的通解.解解将原方程改写为将原方程改写为,121dd2 xyyyx这是一个关于未知函数这是一个关于未知函数 x=x(y)的一阶线性非齐次的一阶线性非齐次方程,方程,,21)(2yyyP 其中其
25、中它的自由项它的自由项 Q(y)=1.代入一阶线性非齐次方程的通解公式,有代入一阶线性非齐次方程的通解公式,有 yCxyyyyyydeed21d2122),e1()e(e12112yyyCyCy 即所求通解为即所求通解为).e1(12yCyx 第七章微第七章微 分分 方方 程程第三节一阶微分方程应用举例第三节一阶微分方程应用举例例例 1 设曲线过点设曲线过点(1,1),且其上任意点,且其上任意点 P 的切的切线在线在 y 轴上截距是切点纵坐标的三倍,求此曲线方程轴上截距是切点纵坐标的三倍,求此曲线方程.解解设所求的曲线方程设所求的曲线方程为为 y=y(x),P(x,y)为其上为其上任意点,任意
展开阅读全文