书签 分享 收藏 举报 版权申诉 / 32
上传文档赚钱

类型几种常见的曲面及其方程课件1.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:4375089
  • 上传时间:2022-12-03
  • 格式:PPT
  • 页数:32
  • 大小:1.65MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《几种常见的曲面及其方程课件1.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    常见 曲面 及其 方程 课件
    资源描述:

    1、第四节一、几种常见的曲面及其方程一、几种常见的曲面及其方程二、二次曲面二、二次曲面 三、曲线三、曲线曲面与曲线 第七七章 由两点间距离公式1.空间一动点到定点的距离为定值,该动点轨迹叫球面。),(zyxM),(0000zyxM特别,当M0在原点时,球面方程为 设轨迹上动点为定值为R,定点xyzoM0M222yxRz表示上(下)球面.Rzzyyxx202020)()()(2202020)()()(Rzzyyxx2222Rzyx定点叫球心,定值叫半径。例例2.研究方程042222yxzyx解解:配方得5,)0,2,1(0M此方程表示:说明说明:如下形式的三元二次方程(A 0)都可通过配方研究它的图

    2、形.其图形可能是的曲面.表示怎样半径为的球面.0)(222GFzEyDxzyxA球心为 一个球面球面,或点点,或虚轨迹虚轨迹.5)2()1(222zyxxyzxyzol2、柱面、柱面.平行定直线并沿定曲线 C 移动的直线 l 形成的轨迹叫做柱面柱面.抛物柱面抛物柱面,椭圆柱面椭圆柱面.xy2212222byax经过z 轴的平面平面.0 yx以上的柱面母线都平行于Z轴 CC 叫做准线准线,l 叫做母线母线.xyzoooClM1M222Ryx圆柱面圆柱面xzy2l一般地,在三维空间柱面,柱面,平行于 x 轴;平行于 y 轴;平行于 z 轴;准线 xoz 面上的曲线 l3.母线柱面,准线 xoy 面

    3、上的曲线 l1.母线准线 yoz 面上的曲线 l2.母线表示方程0),(yxF表示方程0),(zyG表示方程0),(xzHxyz3lxyz1l一条平面曲线3 3、旋转曲面、旋转曲面 绕其平面上一条定直线定直线旋转一周 所形成的曲面叫做旋转曲面旋转曲面.该定直线称为旋转旋转轴轴 .例如例如:建立yoz面上曲线C 绕 z 轴旋转所成曲面的方程:故旋转曲面方程为,),(zyxM当绕 z 轴旋转时,0),(11zyf,),0(111CzyM若点给定 yoz 面上曲线 C:),0(111zyM),(zyxM1221,yyxzz则有0),(22zyxf则有该点转到0),(zyfozyxC思考:思考:当曲线

    4、 C 绕 y 轴旋转时,方程如何?0),(:zyfCoyxz0),(22zxyf例例3.试建立顶点在原点,旋转轴为z 轴,半顶角为的圆锥面方程.解解:在yoz面上直线L 的方程为cotyz 绕z 轴旋转时,圆锥面的方程为cot22yxz)(2222yxazcota令xyz两边平方L),0(zyMxy例例4.求坐标面 xoz 上的双曲线12222czax分别绕 x轴和 z 轴旋转一周所生成的旋转曲面方程.解解:绕 x 轴旋转122222czyax绕 z 轴旋转122222czayx这两种曲面都叫做旋转双曲面.所成曲面方程为所成曲面方程为z二、二次曲面二、二次曲面三元二次方程 适当选取直角坐标系可

    5、得它们的标准方程,下面仅 就几种常见标准型的特点进行介绍.研究二次曲面特性的基本方法:截痕法截痕法 其基本类型有:椭球面、抛物面、双曲面、锥面的图形通常为二次曲面二次曲面.FzxEyxDxyCzByAx2220JIzHyGx(二次项系数不全为 0)zyx1 1.椭球面椭球面),(1222222为正数cbaczbyax(1)范围:czbyax,(2)与坐标面的交线:椭圆,012222zbyax,012222xczby 012222yczax1222222czbyax与)(11czzz的交线为椭圆:1zz(4)当 ab 时为旋转椭球面;同样)(11byyy的截痕)(axxx11及也为椭圆.当abc

    6、 时为球面.(3)截痕:1)()(212221222222zcyzcxcbcacba,(为正数)z2.抛物面抛物面zqypx2222(1)椭圆抛物面(p,q 同号)(2)双曲抛物面(鞍形曲面)zqypx2222zyx特别,当 p=q 时为绕 z 轴的旋转抛物面.(p,q 同号)zyx3.双曲面双曲面(1)(1)单叶双曲面单叶双曲面by 1)1上的截痕为平面1zz 椭圆.时,截痕为22122221byczax(实轴平行于x 轴;虚轴平行于z 轴)1yy zxy),(1222222为正数cbaczbyax1yy 平面 上的截痕情况:双曲线:虚轴平行于x 轴)by 1)2时,截痕为0czax)(bb

    7、y或by 1)3时,截痕为22122221byczax(实轴平行于z 轴;1yy zxyzxy相交直线:双曲线:0(2)双叶双曲面双叶双曲面),(1222222为正数cbaczbyax上的截痕为平面1yy 双曲线上的截痕为平面1xx 上的截痕为平面)(11czzz椭圆注意单叶双曲面与双叶双曲面的区别:双曲线zxyo222222czbyax单叶双曲面11双叶双曲面图形图形4.椭圆锥面椭圆锥面),(22222为正数bazbyax上的截痕为在平面tz 椭圆在平面 x0 或 y0 上的截痕为过原点的两直线.zxyo1)()(2222tbytaxtz,可以证明,椭圆上任一点与原点的连线均在曲面上.(椭圆

    8、锥面也可由圆锥面经 x 或 y 方向的伸缩变换得到,见书 P316)xyz内容小结内容小结1.空间曲面三元方程0),(zyxF 球面2202020)()()(Rzzyyxx 旋转曲面如,曲线00),(xzyf绕 z 轴的旋转曲面:0),(22zyxf 柱面如,曲面0),(yxF表示母线平行 z 轴的柱面.又如,椭圆柱面,双曲柱面,抛物柱面等.2.二次曲面三元二次方程),(同号qp 椭球面1222222czbyax 抛物面:椭圆抛物面双曲抛物面zqypx2222zqypx2222 双曲面:单叶双曲面2222byax22cz1双叶双曲面2222byax22cz1 椭圆锥面:22222zbyax1

    9、1、空间曲线的一般方程、空间曲线的一般方程空间曲线可视为两曲面的交线,其一般方程为方程组0),(0),(zyxGzyxF2SL0),(zyxF0),(zyxG1S例如例如,方程组632122zxyx表示圆柱面与平面的交线 C.xzy1oC2三、曲线又如又如,方程组表示上半球面与圆柱面的交线C.022222xayxyxazyxzaozyxo2 2、空间曲线的参数方程、空间曲线的参数方程将曲线C上的动点坐标x,y,z表示成参数t 的函数:称它为空间曲线的 参数方程.)(txx 例如,圆柱螺旋线vbt,令bzayaxsincos,2 时当bh2taxcostaysin t vz 的参数方程为上升高度

    10、,称为螺距螺距.)(tyy)(tzz M例例1.将下列曲线化为参数方程表示:6321)1(22zxyx0)2(22222xayxyxaz解解:(1)根据第一方程引入参数,txcostysin)cos26(31tz(2)将第二方程变形为,)(42222aayx故所求为得所求为txaacos22tyasin2tazcos2121)20(t)20(t3 3、空间曲线在坐标面上的投影、空间曲线在坐标面上的投影设空间曲线 C 的一般方程为消去 z 得投影柱面则C 在xoy 面上的投影曲线 C为消去 x 得C 在yoz 面上的投影曲线方程消去y 得C 在zox 面上的投影曲线方程0),(0),(zyxGz

    11、yxF,0),(yxH00),(zyxH00),(xzyR00),(yzxTzyxCCzxyo1C又如又如,所围的立体在 xoy 面上的投影区域为:上半球面和锥面224yxz)(322yxz0122zyx在 xoy 面上的投影曲线)(34:2222yxzyxzC二者交线.0,122zyx所围圆域:二者交线在xoy 面上的投影曲线所围之域.(2)ozyxo121x2y(1)224yxz0 xyxzyo2几种常见的曲线及在坐标平面上的投影(3)zxyo oaoa222azx222ayxP324 题2(1)ozy15 xy3 xy15 xy3 xyyz2x319422yx3y022zaxyx0)0,0(222yzxazxyxzaoyxzao作业作业 P32 3,4,5,6,7,8,9,10,11,12

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:几种常见的曲面及其方程课件1.ppt
    链接地址:https://www.163wenku.com/p-4375089.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库