椭圆的定义与标准方程课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《椭圆的定义与标准方程课件.pptx》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 椭圆 定义 标准 方程 课件
- 资源描述:
-
1、椭圆的定义与标准方程引例:若取一条长度一定且没有弹性的细绳,把它若取一条长度一定且没有弹性的细绳,把它的两端都固定在图板的同一点处,套上铅笔,拉的两端都固定在图板的同一点处,套上铅笔,拉紧绳子,移动笔尖,这时笔尖画出的轨迹是什么紧绳子,移动笔尖,这时笔尖画出的轨迹是什么图形?图形?圆的定义:平面内到定点的距离等于定长的点的轨迹是圆222)()(rbyax探究:若将细绳的两端拉开一段距离,分别固定在若将细绳的两端拉开一段距离,分别固定在图板上不同的两点图板上不同的两点F1、F2处,并用笔尖拉处,并用笔尖拉紧绳子,再移动笔尖一周,这时笔尖画出的紧绳子,再移动笔尖一周,这时笔尖画出的轨迹是什么图形呢
2、轨迹是什么图形呢?思考:如何定义椭圆?F1F2xy0p 如何定义椭圆?圆的定义:平面上到定点的距离等于定长 的点的集合叫圆.椭圆的定义:平面上到两个定点F1,F2的距离之和为固定值(大于|F1F2|)的点的轨迹叫作椭圆.1、椭圆的定义:1F2FM 平面内到两个定点F1、F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆。这两个定点叫做椭圆的这两个定点叫做椭圆的焦点焦点,两焦点间的距离,两焦点间的距离叫做椭圆的叫做椭圆的焦距焦距。cFF221为椭圆时,022ca2 2a aMMF FMMF F2 21 133常数要常数要大于大于焦距焦距 22动点动点 M M 与两个定点与两个定点F F
3、1 1和和F F2 2的距离的和是的距离的和是常数常数 11平面内平面内-这是大前提这是大前提 1.改变两图钉之间的距离,使其与改变两图钉之间的距离,使其与绳长相等,画出的图形还是椭圆吗?绳长相等,画出的图形还是椭圆吗?2绳长能小于两图钉之间的距离吗?绳长能小于两图钉之间的距离吗?1.改变两图钉之间的距离,使其与改变两图钉之间的距离,使其与绳长相等,画出的图形还是椭圆吗?绳长相等,画出的图形还是椭圆吗?2绳长能小于两图钉之间的距离吗?绳长能小于两图钉之间的距离吗?回忆圆标准方程推导步骤 求动点轨迹方程的一般步骤:求动点轨迹方程的一般步骤:1、建立适当的坐标系,用有序实数对、建立适当的坐标系,用
4、有序实数对(x,y)表示曲线上任意一点)表示曲线上任意一点M的坐标的坐标;2、写出适合条件、写出适合条件 P(M);3、用坐标表示条件、用坐标表示条件P(M),列出方程),列出方程;4、化方程为最简形式。、化方程为最简形式。结论结论:若把绳长记为若把绳长记为2a,两定点间,两定点间的距离记为的距离记为2c(c0).(1)当)当2a2c时,轨迹是时,轨迹是 ;(2)当)当2a=2c时,轨迹时,轨迹 是是 ;(3)当)当2a0),则F1、F2的坐标分别是(c,0)、(c,0).P与F1和F2的距离的和为固定值2a(2a2c)(问题:下面怎样(问题:下面怎样化简化简?)?)aPFPF2|212222
5、21)(|,)(|ycxPFycxPFaycxycx2)()(2222由椭圆的定义得,限制条件由椭圆的定义得,限制条件:由于由于得方程得方程222222bayaxb 22ba两边除以两边除以 得得).0(12222babyax设所以即,0,2222cacaca),0(222bbca由椭圆定义可知由椭圆定义可知整理得整理得2222222)()(44)(ycxycxaaycx 222)(ycxacxa 2222222222422yacacxaxaxccxaa 两边再平方,得两边再平方,得)()(22222222caayaxca移项,再平方移项,再平方椭圆的标准方程刚才我们得到了焦点在x轴上的椭圆方
6、程,如何推导焦点在y轴上的椭圆的标准方程呢?(问题:下面怎样(问题:下面怎样化简化简?)?)aPFPF2|21222221)(|,)(|cyxPFcyxPFacyxcyx2)()(2222由椭圆的定义得,限制条件由椭圆的定义得,限制条件:由于由于得方程得方程aycxycxx2)()(2222轴焦点在).0(12222babyaxOXYF1F2M(-c,0)(c,0)YOXF1F2M(0,-c)(0,c)0(12222babyax)0(12222babxay 椭圆的标准方程的特点:(1)椭圆标准方程的形式:左边是两个分式的平方和,右边是1(2)椭圆的标准方程中三个参数a、b、c满足a2=b2+c
7、2。(3)由椭圆的标准方程可以求出三个参数a、b、c的值。(4)椭圆的标准方程中,x2与y2的分母哪一个大,则焦点在哪一个轴上。2222+=1 0 xyabab2222+=1 0 xyabba分母哪个大,焦点就在哪个轴上分母哪个大,焦点就在哪个轴上222=+abc平面内到两个定点平面内到两个定点F1,F2的距离的和等的距离的和等于常数(大于于常数(大于F1F2)的点的轨迹)的点的轨迹12-,0,0,FcFc120,-0,,FcFc标准方程标准方程不不 同同 点点相相 同同 点点图图 形形焦点坐标焦点坐标定定 义义a、b、c 的关系的关系焦点位置的判断焦点位置的判断 再认识!再认识!xyF1 1
8、F2 2POxyF1 1F2 2PO三、例题分析三、例题分析543(-3,0)、(3,0)6x例例1.已知椭圆方程为已知椭圆方程为 ,则则(1)a=,b=,c=;(2)焦点在焦点在 轴上轴上,其焦点坐标为其焦点坐标为 ,焦距为焦距为 。(3)(3)若椭圆方程为若椭圆方程为 ,其焦点坐标为其焦点坐标为 .2212516xy1251622 yx(0,3)、(0,-3)例例2.求下列椭圆的焦点坐标,以及椭圆上求下列椭圆的焦点坐标,以及椭圆上每一点到两焦点距离的和。每一点到两焦点距离的和。14)1(22 yx154)2(22yx434)3(22 yx解:解:椭圆方程具有形式椭圆方程具有形式12222b
9、yax其中其中1,2ba因此因此31422bac两焦点坐标为两焦点坐标为)0,3(),0,3(椭圆上每一点到两焦点的距离之和为椭圆上每一点到两焦点的距离之和为42 a例例1椭圆的两个焦点的坐标分别是(椭圆的两个焦点的坐标分别是(4,0)(4,0),椭圆上一点),椭圆上一点P到两焦点距离之和等于到两焦点距离之和等于10,求椭圆的标准方程。求椭圆的标准方程。1 12 2yoFFMx.解:解:椭圆的焦点在椭圆的焦点在x轴上轴上设它的标准方程为设它的标准方程为:2a=10,2c=8 a=5,c=4 b2=a2c2=5242=9所求椭圆的标准方程为所求椭圆的标准方程为)0(12222babyax1925
10、22yx求椭圆的标准方程求椭圆的标准方程(1)首先要)首先要判断判断类型,类型,(2)用)用待定系数法待定系数法求求ba,椭圆的定义椭圆的定义a2=b2+c2例例2 2.已已知知椭椭圆圆的的两两个个焦焦点点坐坐标标分分别别为为(-2 2,0 0),5 53 3(2 2,0 0)并并且且经经过过点点(,-),求求它它的的标标准准方方程程.2 22 22 22 22 22 2解解:因因为为椭椭圆圆的的焦焦点点在在x x轴轴上上,所所以以设设它它的的标标准准方方程程为为x xy y+=1 1(a a b b 0 0).a ab b2 22 22 22 22 22 22 2由由椭椭圆圆的的定定义义知知
11、5 53 35 53 32 2a a=+2 2+-+-2 2+-=2 2 1 10 02 22 22 22 2所所以以a a=1 10 0.又又因因为为c c=2 2,所所以以b b=a a-c c=1 10 0-4 4=6 6.22222222因因此此,所所求求椭椭圆圆的的标标准准方方程程为为xyxy+=1.+=1.106106求椭圆标准方程的解题步骤:求椭圆标准方程的解题步骤:(1)确定焦点的位置;)确定焦点的位置;(2)设出椭圆的标准方程;)设出椭圆的标准方程;(3)用待定系数法确定)用待定系数法确定a、b的值,的值,写出椭圆的标准方程写出椭圆的标准方程.1 111 11变变式式引引申申
12、:求求焦焦点点在在y y轴轴上上,且且经经过过点点A(,)A(,)、B(0,-)B(0,-)的的3 323 32椭椭圆圆的的标标准准方方程程.2 22 22 22 22 22 2y yx x解解:设设 所所 求求 椭椭 圆圆 的的 方方 程程 为为+=1 1,a ab b1 11 11 1将将 A A(,),B B(0 0,-)代代 入入 得得:3 33 32 22 22 21 11 13 33 3+=1 12 22 2a ab b,2 21 1-2 2=1 12 2a a1 12 2a a=,4 4解解 得得:1 12 2b b=.5 5y yx x故故 所所 求求 椭椭 圆圆 的的 标标
展开阅读全文