《癌肿瘤遗传学》课件204页.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《《癌肿瘤遗传学》课件204页.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 癌肿瘤遗传学 癌肿 遗传学 课件 204
- 资源描述:
-
1、1 如何揭示肿瘤发生的遗传机制呢?如何揭示肿瘤发生的遗传机制呢?遗传学家与临床肿瘤学家们从(群体、遗传学家与临床肿瘤学家们从(群体、细胞、生化、免疫)遗传学和分子遗传学细胞、生化、免疫)遗传学和分子遗传学不同角度探讨肿瘤与遗传的关系,就逐渐不同角度探讨肿瘤与遗传的关系,就逐渐形成了一门新学科形成了一门新学科癌分子遗传学。癌分子遗传学。简言之,简言之,就是应用遗传学的基本原理、就是应用遗传学的基本原理、方法研究肿瘤的发生、发展与遗传的关系方法研究肿瘤的发生、发展与遗传的关系及规律,揭示肿瘤发生机理。及规律,揭示肿瘤发生机理。2 2、癌与肿瘤的概念癌与肿瘤的概念 单细胞生物为了生长,必须对环境单细
2、胞生物为了生长,必须对环境的变化产生反应,细胞为了营养的来源的变化产生反应,细胞为了营养的来源和生长、分裂,与周围的细胞竞争,直和生长、分裂,与周围的细胞竞争,直至营养供应被耗尽。至营养供应被耗尽。进化创造了多细胞生物进化创造了多细胞生物多细胞多细胞机体机体,高等生物。,高等生物。良、恶性肿瘤的基本区别:良、恶性肿瘤的基本区别:肿瘤是由连续无休止生长,且分化差的细胞肿瘤是由连续无休止生长,且分化差的细胞组成,一般有良、恶性之分。组成,一般有良、恶性之分。1 1)良性肿瘤的特征(异形性与周围组织差异不良性肿瘤的特征(异形性与周围组织差异不显著)显著);2)2)细胞被周围正常组织所局限,常有一层纤
3、维结细胞被周围正常组织所局限,常有一层纤维结缔组织包围;缔组织包围;3 3)生长缓慢,呈膨胀性,对周围组织不具侵袭生长缓慢,呈膨胀性,对周围组织不具侵袭破坏性破坏性,不发生远处转移。不发生远处转移。所有生物生存于自然界中和环境有着所有生物生存于自然界中和环境有着千丝万缕的联系,密不可分,人们所处千丝万缕的联系,密不可分,人们所处的环境之中有:的环境之中有:疾病 染色体异常 易患肿瘤有丝分裂有丝分裂1 1 有丝分裂有丝分裂2 2 细胞有丝分裂此外,还有:此外,还有:一些学者提出应区别两类染色体畸变一些学者提出应区别两类染色体畸变总之总之 与与KnodsonKnodson二次打击学说是一致的二次打
4、击学说是一致的,Rb Rb GeneGene缺失或功能丧失,失去对肿瘤细胞的抑缺失或功能丧失,失去对肿瘤细胞的抑制作用,认为制作用,认为Rb Gene Rb Gene 为为TSGTSG。前三种情况(前三种情况(1 1、2 2和和3 3),肿瘤组织中正常等位基因),肿瘤组织中正常等位基因丢失(丢失(A A),这称为杂合性丢失。),这称为杂合性丢失。它的部分作用是调控一组细胞转录因子它的部分作用是调控一组细胞转录因子-E2F-E2F。细胞周期进入。细胞周期进入S S期前(期前(2-4hr2-4hr)pRb pRb 磷酸化而失活,解除对磷酸化而失活,解除对E2FE2F的抑制使的抑制使细胞进入细胞进入
5、S S期。期。A A、停止细胞复制损伤的、停止细胞复制损伤的DNADNA。B B、参于细胞周期、参于细胞周期G1/SG1/S阶段的阶段的CheckpointCheckpoint(细胞缺少(细胞缺少p53p53或含有其突变时,就不能停止或含有其突变时,就不能停止于于G1G1期),而损伤期),而损伤DNADNA的复制可导致遗传的变的复制可导致遗传的变化。化。C C、与细胞死亡有关,调节细胞凋亡。这是、与细胞死亡有关,调节细胞凋亡。这是高水平的细胞结构自然选择的防御。癌的发生高水平的细胞结构自然选择的防御。癌的发生就是这一控制功能的丧失。证明缺乏就是这一控制功能的丧失。证明缺乏p53p53的细的细胞
6、不能进行凋亡。胞不能进行凋亡。现已发现有现已发现有3030多种多种TSGTSG,近年发现的有,近年发现的有FHITFHIT、PTENPTEN(MMAC1MMAC1)等。)等。1303、增变基因、增变基因n增变基因:在确保遗传信息的完整性上起一定作增变基因:在确保遗传信息的完整性上起一定作用,其突变导致用,其突变导致DNADNA复制和修复障碍。复制和修复障碍。n长期以来,肿瘤表现遗传不稳定性:长期以来,肿瘤表现遗传不稳定性:数目异常数目异常 核型异常核型异常 结构异常结构异常 都和增变基因突变相关。都和增变基因突变相关。LOHLOH DNADNA MI MI 131增变基因增变基因 n19931
7、993年年FishelFishel在在E.ColiE.Coli和和yeastyeast中发现中发现,并将并将MutHLSMutHLS基因称为基因称为mutater genemutater gene。这些基因编。这些基因编码一种错误改正系统码一种错误改正系统-检查检查DNADNA错配错配的碱基对。的碱基对。n增变基因突变会导致增变基因突变会导致10010001001000倍突变率的倍突变率的增加。故现在又称为增加。故现在又称为DNADNA错配修复基因。错配修复基因。nFishelFishel等克隆了人的这一同源基因,等克隆了人的这一同源基因,Muts,Muts,并定位于并定位于2P2P,并迅速鉴
8、定了另三个这样基因。,并迅速鉴定了另三个这样基因。132结肠癌的结肠癌的mutator genemutator gene。E Ecoli coli 人人 染色体的位置染色体的位置%HNPCC%HNPCCMuts MSH2 2P15-P22 50-60%Mutl MLH1 3P21.3 30,40%Mutl PMS1 2p31-p33 5%Mutl PMS2 7p22 5%与与TSGTSG一样,这类基因突变是隐性的,亦需一样,这类基因突变是隐性的,亦需要两次打击机制。要两次打击机制。133 错配修复基因(错配修复基因(m misism match atch r repair gene epair
9、 gene,MMRMMR)nDNA错配修复系统(MMR首先是在原核生物中发现)Mut SnMMR系统 Mut L 也称 Mut SLH 途径。MutHn该系统的修复机制主要依赖于Mut S、MutL、MutH,基因所编码的蛋白、酶分子来完成。nMutS其蛋白的作用是识别错配的碱基位点并与 之结合。n而后MutL 和MutH基因产物依次与MutS形成复合物 进行协同作用。134AGNATTCGTAMutSMutHAGNATTCGTAMutL135另外,该系统还需要其它酶和因子参与另外,该系统还需要其它酶和因子参与 DNADNA聚合酶聚合酶IIIIII;如:如:DNADNA连接酶;连接酶;单链结合
10、蛋白;单链结合蛋白;外切酶等,从而共同完成修复反应。外切酶等,从而共同完成修复反应。136人类人类MMR系统系统:n现已阐明,人类现已阐明,人类MMRMMR基因编码的错配修复蛋白可基因编码的错配修复蛋白可相互作用,形成一种多聚复合物,参与细胞错相互作用,形成一种多聚复合物,参与细胞错配修复反应。配修复反应。修复:修复修复:修复DNADNA复制过程中出现的碱复制过程中出现的碱 作用作用 基错配。基错配。消除:消除由于简单重复序列之间的消除:消除由于简单重复序列之间的 遗传重组出现的不配对基碱序列。遗传重组出现的不配对基碱序列。137目的目的n从而有效地防止从而有效地防止DNADNA复制差错的产生
11、。复制差错的产生。n人体细胞中人体细胞中DNA DNA 错配修复反应过程依赖错配修复反应过程依赖于几种人类于几种人类MMRMMR基因产物,因此,其中任基因产物,因此,其中任何一种基因发生突变导致其产物的功能何一种基因发生突变导致其产物的功能丧失,将造成丧失,将造成DNADNA错配,修复功能的异常、错配,修复功能的异常、缺陷、或丧失。缺陷、或丧失。138人类人类MMRMMR基因定位:基因定位:Gene location Exon ORF 产物产物 HMSH2 2p16 16 2802bp 934 aa HMLH1 3p21.3 19 2268bp 756 aa HPMS1 2q31-q33?27
12、95bp 932aa HPMS2 2p22?2586bp 862aa 139人类人类MMRMMR系统与肿瘤系统与肿瘤nDNA DNA 错配修复基因的完整性对确保错配修复基因的完整性对确保DNADNA复制的精确性极复制的精确性极为重要为重要。DNA MMRDNA MMR系统系统 GeneGene 突变突变 MMRMMR系统缺陷系统缺陷 修复功能下降修复功能下降 MI 肿瘤易感性增强肿瘤易感性增强140微卫星不稳定(微卫星不稳定(Microsatellite DNA Microsatellite DNA instability,MI instability,MI)n微卫星不稳定(微卫星不稳定(Mi
13、crosatellite DNA instability,MIMicrosatellite DNA instability,MI)是指是指T T组织和组织和N N组织相比,其组织相比,其DNADNA等位结构发生简单重等位结构发生简单重复序列的改变,这种改变表现在肿瘤组织与其对应的正复序列的改变,这种改变表现在肿瘤组织与其对应的正常组织常组织PCRPCR产物经电泳后,电泳带出现增加或减少、位置产物经电泳后,电泳带出现增加或减少、位置及带的密度变化。及带的密度变化。N T LOH MI 150六、端粒和端粒酶六、端粒和端粒酶 端粒(端粒(telomeretelomere):是真核细胞染色体末端:是
14、真核细胞染色体末端的一种特殊结构,由端粒的一种特殊结构,由端粒DNADNA和蛋白质组成。和蛋白质组成。其端粒其端粒DNADNA是富含是富含G G的高度的高度 保守的重复核苷酸保守的重复核苷酸序列。对染色体具有保护作用。序列。对染色体具有保护作用。151 不同物种的端粒不同物种的端粒DNA DNA 序列并不一致,人和其它哺乳序列并不一致,人和其它哺乳动物的端粒动物的端粒DNADNA序列由序列由5533方向的(方向的(TTAGGGTTAGGG)n n反复串联组成。在人类大约有反复串联组成。在人类大约有121215Kb15Kb,是非结,是非结构基因,不编码蛋白质。构基因,不编码蛋白质。端粒端粒DNA
15、DNA的的33末端较末端较55末端伸出末端伸出121216bp 16bp 的一段的一段弯曲呈帽状结构,保护染色体,防止断裂、重组或弯曲呈帽状结构,保护染色体,防止断裂、重组或降解,促进染色体与核膜粘着,以及减数分裂时同降解,促进染色体与核膜粘着,以及减数分裂时同源染色体配对。源染色体配对。端粒被认为是细胞有丝分裂的端粒被认为是细胞有丝分裂的“生物钟生物钟”,随着细,随着细胞分裂的不断进行,端粒逐渐缩短。当其长度减小胞分裂的不断进行,端粒逐渐缩短。当其长度减小到一定临界值时,细胞趋向衰老、死亡。到一定临界值时,细胞趋向衰老、死亡。152端粒端粒DNA DNA 逐渐变短的主要原因逐渐变短的主要原因
16、:1 1、细胞分裂过程中线形染色体的末端端粒、细胞分裂过程中线形染色体的末端端粒DNADNA不能完全被不能完全被DNADNA指导指导DNADNA多聚酶所复制;多聚酶所复制;2 2、末端的特异性和非特异性降解;、末端的特异性和非特异性降解;3 3、细胞异源端粒之间的不均匀重组。、细胞异源端粒之间的不均匀重组。153影响端粒长度的因素很多,其中主要有:影响端粒长度的因素很多,其中主要有:端粒结合蛋白端粒结合蛋白 端粒帽蛋白端粒帽蛋白 端粒酶及端粒酶及 DNADNA复制酶等复制酶等 其中其中端粒酶端粒酶是最主要因素。是最主要因素。端粒酶(端粒酶(telomerasretelomerasre):):是
17、一种逆转录酶,能延长端粒末端,由蛋白质是一种逆转录酶,能延长端粒末端,由蛋白质和和RNA RNA 组成,可以其组成,可以其RNARNA为模板指导为模板指导DNADNA合成,向端合成,向端粒末端添加(粒末端添加(TTAGGGTTAGGG)n n序列,使端粒延长,延长序列,使端粒延长,延长细胞的寿命甚至使其永生化。细胞的寿命甚至使其永生化。154端粒合成机制端粒合成机制155156 细胞进入细胞进入G1/SG1/S期,端粒酶活性逐渐增高,而期,端粒酶活性逐渐增高,而在在S S期活性最高,在期活性最高,在G2G2期期/M/M期端粒酶活性逐渐期端粒酶活性逐渐消失。消失。利用利用TRAPTRAP(Tel
18、emeric Repeat Amplication Telemeric Repeat Amplication ProtocolProtocol)技术检测正常动物、植物细胞时技术检测正常动物、植物细胞时发现,除个别增生活跃的组织有微弱的端粒发现,除个别增生活跃的组织有微弱的端粒酶活性外,其他组织都没有端粒酶活性,但酶活性外,其他组织都没有端粒酶活性,但在肿瘤细胞、永生型细胞及干细胞(如造血在肿瘤细胞、永生型细胞及干细胞(如造血干细胞)中,端粒酶可被激活,活性增强。干细胞)中,端粒酶可被激活,活性增强。157端粒酶与肿瘤端粒酶与肿瘤 在恶性肿瘤中,端粒酶活性明显增高,在恶性肿瘤中,端粒酶活性明显增
19、高,以延长端粒,弥补因细胞分裂而造成的以延长端粒,弥补因细胞分裂而造成的端粒缩短,从而使细胞无限增殖恶化,端粒缩短,从而使细胞无限增殖恶化,甚至使癌细胞永生化。甚至使癌细胞永生化。158 UedaUeda报道(报道(20192019,Cancer Res.Cancer Res.),在恶性肿),在恶性肿瘤中瘤中91%91%端粒酶活性增强。端粒酶活性增强。Zheng PZheng P。S S。20192019,报道,妇科肿瘤中端粒,报道,妇科肿瘤中端粒酶活性增强的占酶活性增强的占95%95%。上述情况表明,绝大多数肿瘤细胞中都呈端上述情况表明,绝大多数肿瘤细胞中都呈端粒酶阳性,而在正常组织中却无表
20、达。揭示,粒酶阳性,而在正常组织中却无表达。揭示,端粒酶可能是一个广泛的肿瘤标致,可用于端粒酶可能是一个广泛的肿瘤标致,可用于肿瘤的诊断。肿瘤的诊断。Hiyama E Hiyama E (20192019,CancerResCancerRes),通过检),通过检测胰腺肿瘤得出:测胰腺肿瘤得出:95%95%胰腺癌中端粒酶活性增胰腺癌中端粒酶活性增强,而在良性胰腺瘤中为强,而在良性胰腺瘤中为0%0%。159 哪么能否应用抑制端粒酶的手段来治疗肿瘤哪么能否应用抑制端粒酶的手段来治疗肿瘤呢?呢?这个问题正是目前人们关注的问题,也这个问题正是目前人们关注的问题,也是研究的热点。是研究的热点。研究者们建议
21、利用端粒酶抑制剂进行肿瘤治研究者们建议利用端粒酶抑制剂进行肿瘤治疗。疗。7-deaza-d ATP7-deaza-d ATP(7-7-脱氮脱氮-2-2脱氧腺苷酸)和脱氧腺苷酸)和7-7-deaza-d GTPdeaza-d GTP(7-7-脱氮脱氮-2-2脱氧鸟苷酸)是潜在脱氧鸟苷酸)是潜在的端粒酶抑制剂,二者都可通过端粒酶的催的端粒酶抑制剂,二者都可通过端粒酶的催化作用惨入到端粒化作用惨入到端粒DNADNA中,由于它们的掺入使中,由于它们的掺入使端粒过早地缩短,开僻了肿瘤治疗的新途径。端粒过早地缩短,开僻了肿瘤治疗的新途径。160 KanazawaKanazawa制备一种锤头核酸酶制备一种锤
22、头核酸酶telorztelorz,作用,作用于人类端粒酶的于人类端粒酶的RNA RNA 成分,对已合成的端粒成分,对已合成的端粒酶酶RNARNA成分具有特异分解作用,对端粒酶有明成分具有特异分解作用,对端粒酶有明显的抑制作用。显的抑制作用。应用反义核酸治疗方法,人工合成反义应用反义核酸治疗方法,人工合成反义DNA/RNA DNA/RNA 抑制端粒酶的作用。抑制端粒酶的作用。161核酶核酶162核酶163RNARNA干涉干涉 近年来的研究表明近年来的研究表明 将与将与mRNA对应的正义对应的正义RNA和反义和反义RNA组组成的双链成的双链RNA(dsRNA)导入细胞,可以使导入细胞,可以使mRN
23、A发生特异性的降解,导致其相应的基发生特异性的降解,导致其相应的基因沉默。这种转录后基因沉默机制因沉默。这种转录后基因沉默机制(post-transcriptionalgenesilencing,PTGS)被被称为称为RNA干扰(干扰(RNAi)。)。164165GFP报告基因-RNAi166167168169170RNA干涉05/11/18cellwangxiaodong171RNAi的分子机制的分子机制 RNA干扰包括干扰包括起始阶段和效应阶段起始阶段和效应阶段(inititationandeffectorsteps)。在起始阶段在起始阶段加入的小分子加入的小分子RNA被切割为被切割为21
24、-23核苷酸长的小分子干扰核苷酸长的小分子干扰RNA片段片段(smallinterferingRNAs,siRNAs)。证据表明;一个称为。证据表明;一个称为Dicer的酶,的酶,是是RNaseIII家族中特异识别双链家族中特异识别双链RNA的一员,它能的一员,它能以一种以一种ATP依赖的方式逐步切割由外源导入或者由依赖的方式逐步切割由外源导入或者由转基因,病毒感染等各种方式引入的双链转基因,病毒感染等各种方式引入的双链RNA,将,将RNA降解为降解为21-23bp的双链的双链RNAs(siRNAs),每个,每个片段的片段的3端都有端都有2个碱基突出。个碱基突出。172173 在在RNAi效应
25、阶段效应阶段siRNA双链结合一个核酶复合双链结合一个核酶复合物从而形成所谓物从而形成所谓RNA诱导沉默复合物(诱导沉默复合物(RNA-inducedsilencingcomplex,RISC)。激活。激活RISC需要一个需要一个ATP依赖的将小分子依赖的将小分子RNA解双链的过程。解双链的过程。激活的激活的RISC通过碱基配对定位到同源通过碱基配对定位到同源mRNA转录本转录本上,并在距离上,并在距离siRNA3端端12个碱基的位置切割个碱基的位置切割mRNA。尽管切割的确切机制尚不明了,但每个尽管切割的确切机制尚不明了,但每个RISC都都包含一个包含一个siRNA和一个不同于和一个不同于D
展开阅读全文