《用因式分解法解一元二次方程》一元二次方程-课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《《用因式分解法解一元二次方程》一元二次方程-课件.pptx》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 用因式分解法解一元二次方程 因式 解法 一元 二次方程 课件
- 资源描述:
-
1、 回顾与复习1.我们已经学过了几种解一元二次方程 的方法?2.什么叫分解因式?把一个多项式分解成几个整式乘积的形式叫做分解因式.直接开平方法配方法x2=a(a0)(x+m)2=n(n0)公式法.04.2422acbaacbbx分解因式的方法有那些?(1)提取公因式法:(2)公式法:(3)十字相乘法:am+bm+cm=m(a+b+c).a2-b2=(a+b)(a-b),a22ab+b2=(ab)2.x2+(a+b)x+ab=11ba(x+a)(x+b).回顾与复习实际问题 根据物理学规律,如果把根据物理学规律,如果把一个物体从地面一个物体从地面 10 m/s 的速度的速度竖直上抛,那么经过竖直上
2、抛,那么经过 x s 物体离物体离地面的高度(单位:地面的高度(单位:m)为)为 设物体设物体经过经过 x s 落回地面,这时它落回地面,这时它离地面的高度为离地面的高度为 0,即,即2104.9xx 根据这个规律求出物体经过多少秒落回地面?根据这个规律求出物体经过多少秒落回地面?(精确到(精确到 0.01 s)提示提示2104.90 xx2104.90 xx解:解:2100049xx22210050500494949xx 2250504949x 50504949x 50504949x 110049x,20 x 配方法配方法公式法公式法2104.90 xx解:解:24.9100 xxa=4.9
3、,b=10,c=0aacbbx24210102 4.9 b24ac=(10)244.90=100110049x,20 x 104.9x09.410 x2104.90 xx因式分解因式分解 如果如果a b=0,那么那么 a=0或或 b=0。x00 x,01x04.2491002x两个因式乘积为两个因式乘积为 0,说明什么,说明什么或或降次,化为两个一次方程降次,化为两个一次方程解两个一次方程,得出原方程的根解两个一次方程,得出原方程的根这种解法是不是很简单?这种解法是不是很简单?探究探究可以发现,上述解法中,由到的过程,不是用开方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这
4、两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法以上解方程 的方法是如何使二次方程降为一次的?09.410 xx09.410 xx0104.90,xx或 以上解方程的方法是如何使二次方程降为一次的以上解方程的方法是如何使二次方程降为一次的?可以发现可以发现,上述解法中上述解法中,由到的过程由到的过程,不是用不是用开平方降次开平方降次,而是先因式分解使方程化为两个一次而是先因式分解使方程化为两个一次式的乘积等于式的乘积等于0的形式的形式,再使这两个一次式分别等于再使这两个一次式分别等于0,从而实现降次从而实现降次.这种解法叫做这种解法叫做因式分解法因式分解法.w提示提示:1.1.用用分
5、解因式法分解因式法的的条件条件是是:方程左边易于分解方程左边易于分解,而右边而右边等于零等于零;2.2.关键关键是熟练掌握因式分解的知识是熟练掌握因式分解的知识;3.3.理论理论依旧是依旧是“ab=0,则则a=0或或b=0 ”.4324125)2(;02)2()1(:.322xxxxxxx解下列方程例w分解因式法解一元二次方程的步骤是分解因式法解一元二次方程的步骤是:2.将方程将方程左边左边因式分解为因式分解为AB;3.根据根据“ab=0,则则a=0或或b=0”,转化为两个一元一次方程转化为两个一元一次方程.4.分别解这分别解这两个两个一元一次方程,它们的根就是原方程的根一元一次方程,它们的根
6、就是原方程的根.1.将方程将方程右边等于右边等于0;可以试用多种方法解本例中的两个方程.例3 解下列方程:221220;132522.44x xxxxxx解:(1)因式分解,得于是得x20或x1=0,x1=2,x2=1.(2)移项、合并同类项,得2410.x 因式分解,得 (2x1)(2x1)=0.于是得2x1=0或2x1=0,1211,.22xx(x2)(x1)=0.可以试用多种方法解本例中的两个方程.1.解下列方程:解:因式分解,得(1)x2+x=0 x(x+1)=0.得 x=0 或 x+1=0,x1=0 ,x2=1.222 30 xx解:因式分解,得2 30.x x02 30,xx得或
7、120,2 3.xx练习.)25()4()6(;24)12(3 )5(;01214 )4(;363 )3(;032 (2);0 1222222xxxxxxxxxxxx )(223363,441210 xxx 解:化为一般式为因式分解,得x22x+1=0.(x1)(x1)=0.有 x 1=0 或 x 1=0,x1=x2=1.解:因式分解,得(2x+11)(2x 11)=0.有 2x+11=0 或 2x 11=0,121111,.22xx 225321426452xxxxx 解:化为一般式为因式分解,得6x2 x 2=0.(3x 2)(2x+1)=0.有 3x 2=0 或 2x+1=0,1221,
8、.32xx 解:变形有因式分解,得(x 4)2 (5 2x)2=0.(x 4 5+2x)(x 4+5 2x)=0.(3x 9)(1 x)=0.有 3x 9=0 或 1 x=0,x1=3 ,x2=1.2.把小圆形场地的半径增加5m得到大圆形场地,场地面积增加了一倍,求小圆形场地的半径解:设小圆形场地的半径为r根据题意 (r+5)2=2r2.因式分解,得52520.rrrr 于是得250250.rrrr或1255,().2112rr舍去答:小圆形场地的半径是5.21mw分解因式法解一元二次方程的步骤是:1.将方程左边因式分解,右边等于0;2.根据“至少有一个因式为零”,转化为两个一元一次方程.3.
9、分别解两个一元一次方程,它们的根就是原方程的根.用因式分解法解一元二次方程的步骤用因式分解法解一元二次方程的步骤 1.方程右边化为方程右边化为_。2.将方程左边分解成两个将方程左边分解成两个_的乘积。的乘积。3.至少至少_因式为零,得到两个一元一次因式为零,得到两个一元一次方程。方程。4.两个两个_就是原方程的根。就是原方程的根。零一次因式有一个一元一次方程的解AB=0(A、B 表示两个因式)表示两个因式)A=0 或或 B=0课前练习3(2)5(2)x xx(2)(3)x24=0(4)(3x1)25=0(1)2x24x 2=0(1)2x24x 2=0 x1=解:因式分解,得解:因式分解,得 2
10、(x1)2x1=0=0或或x2=1x1=0分解因式的方法有那些?(1)提取公因式法:(2)公式法:am+bm+cm=m(a+b+c).a2-b2=(a+b)(a-b),a22ab+b2=(ab)2.3(2)5(2)x xx(2)解:移项,得解:移项,得35(2)()02x xx因式分解,得因式分解,得(2)x0(35)xx2=0 或或 3x5=0 x1=2,x2=53(3)x24=0解:因式分解,得解:因式分解,得(x2)x2=0 x1=2,(x2)=0或或x2=0 x2=2(4)(3x1)25=0 315x 315x=0 或或1153x,2153x 解:因式分解,得解:因式分解,得3150
11、x 3150 x 你学过一元二次方程的哪些解法你学过一元二次方程的哪些解法?因式分解法因式分解法开平方法开平方法配方法配方法公式法公式法你能说出每一种解法的特点吗你能说出每一种解法的特点吗?方程的左边是完全平方式方程的左边是完全平方式,右边是非右边是非负数负数;即形如即形如x x2 2=a=a(a0)(a0)1212xa,xaxa,xa1.1.化化1:1:把二次项系数化为把二次项系数化为1 1;2.2.移项移项:把常数项移到方程的右边把常数项移到方程的右边;3.3.配方配方:方程两边同加方程两边同加一次项系数一次项系数 一半的平方一半的平方;4.4.变形变形:化成化成5.5.开平方开平方,求解
12、求解(x xm m)a a+=2 2“配方法配方法”解方程的基本步骤解方程的基本步骤一除、二移、三配、四化、五解一除、二移、三配、四化、五解.用用公式法公式法解一元二次方程的解一元二次方程的前提前提是是:1.1.必需是一般形式的一元二次方程必需是一般形式的一元二次方程:ax ax2 2+bx+c=0(a0).+bx+c=0(a0).2.b2.b2 2-4ac0.-4ac0.0 04ac4acb b.2a2a4ac4acb bb bx x2 22 21.1.用因式分解法的用因式分解法的条件条件是是:方程左边能够方程左边能够 分解分解,而右边等于零而右边等于零;2.2.理论理论依据依据是是:如果两
13、个因式的积等于零如果两个因式的积等于零 那么至少有一个因式等于零那么至少有一个因式等于零.因式分解法解一元二次方程的一般因式分解法解一元二次方程的一般步骤步骤:一移一移-方程的右边方程的右边=0;=0;二分二分-方程的左边因式分解方程的左边因式分解;三化三化-方程化为两个一元一次方程方程化为两个一元一次方程;四解四解-写出方程两个解写出方程两个解;请用四种方法解下列方程请用四种方法解下列方程:4(x 4(x1)1)2 2=(2x=(2x5)5)2 2先考虑开平方法先考虑开平方法,再用因式分解法再用因式分解法;最后才用公式法和配方法最后才用公式法和配方法;3.3.公式法公式法:221.222.5
14、30按按要要求求解解下下列列方方程程:因因式式分分解解法法:3 3配配方方法法:2 2xx xxx 2112112 2xxyyy总结:方程中有括号时,应总结:方程中有括号时,应先用整体思想先用整体思想考虑有没考虑有没有简单方法,若看不出合适的方法时,则把它去括有简单方法,若看不出合适的方法时,则把它去括号并整理为一般形式再选取合理的方法。号并整理为一般形式再选取合理的方法。x x2 2-3x+1=0 -3x+1=0 3x 3x2 2-1=0 -1=0 -3t -3t2 2+t=0 +t=0 x x2 2-4x=2 -4x=2 2x 2x2 2x=0 x=0 5(m+2)5(m+2)2 2=8=
15、8 3y 3y2 2-y-1=0 -y-1=0 2x 2x2 2+4x-1=0 +4x-1=0 (x-2)(x-2)2 2=2(x-2)=2(x-2)适合运用直接开平方法适合运用直接开平方法 ;适合运用因式分解法适合运用因式分解法 ;适合运用公式法适合运用公式法 ;适合运用配方法适合运用配方法 .一般地,当一元二次方程一次项系数为一般地,当一元二次方程一次项系数为0 0时时(axax2 2+c=0+c=0),应选用),应选用直接开平方法直接开平方法;若常数项为若常数项为0 0(axax2 2+bx=0+bx=0),应选用),应选用因式分解法;因式分解法;若一次项系数和常数项都不为若一次项系数和
16、常数项都不为0(0(axax2 2+bx+c=0+bx+c=0),),先化为一般式,看一边的整式是否容易因式分解,先化为一般式,看一边的整式是否容易因式分解,若容易,宜选用因式分解法,不然选用若容易,宜选用因式分解法,不然选用公式法公式法;不过当二次项系数是不过当二次项系数是1 1,且一次项系数是偶数时,且一次项系数是偶数时,用配方法也较简单。用配方法也较简单。我的发现用最好的方法求解下列方程用最好的方法求解下列方程1)1)(3x-23x-2)-49=0 -49=0 2 2)(3x-43x-4)=(4x-34x-3)3)4y=13)4y=1 y y32选用适当的方法解一元二次方程选用适当的方法
17、解一元二次方程1.解一元二次方程的方法有:解一元二次方程的方法有:因式分解法因式分解法 直接开平方法直接开平方法 公式法公式法 配方法配方法 5x 5x2 2-3 x=0-3 x=0 3x 3x2 2-2=0-2=0 x x2 2-4x=6-4x=6 2x 2x2 2-x-3=0-x-3=0 2x 2x2 2+7x-7=0+7x-7=0 22.引例:给下列方程选择较简便的方法引例:给下列方程选择较简便的方法(运用因式分解法)(运用因式分解法)(运用直接开平方法)(运用直接开平方法)(运用配方法)(运用配方法)(运用公式法)(运用公式法)(运用公式法)(运用公式法)(方程一边是(方程一边是0,另
18、一边整式容易因式分解),另一边整式容易因式分解)(()()2 2=C C0=C C0)(化方程为一般式)化方程为一般式)(二次项系数为(二次项系数为1,而一次项系为偶数),而一次项系为偶数)公式法虽然是万能的,对任何一元二次方程都适用,公式法虽然是万能的,对任何一元二次方程都适用,但不一定是最简单的,因此在解方程时我们首先考虑能但不一定是最简单的,因此在解方程时我们首先考虑能否应用否应用“直接开平方法直接开平方法”、“因式分解法因式分解法”等简单方法,等简单方法,若不行,再考虑公式法(适当也可考虑配方法)若不行,再考虑公式法(适当也可考虑配方法)2、用适当方法解下列方程、用适当方法解下列方程
19、-5x-5x2 2-7x+6=0-7x+6=0 2x 2x2 2+7x-4=0+7x-4=0 4(t+2 )4(t+2 )2 2=3=3 x x2 2+2x-9999=0+2x-9999=0 (5 5)3t(t+2)=2(t+2)3t(t+2)=2(t+2)3小结:小结:ax2+c=0 =ax2+bx=0 =ax2+bx+c=0 =因式分解法因式分解法公式法(配方法)公式法(配方法)2、公式法虽然是万能的,对任何一元二次方程都适用,但不一定、公式法虽然是万能的,对任何一元二次方程都适用,但不一定 是最简单的,因此在解方程时我们首先考虑能否应用是最简单的,因此在解方程时我们首先考虑能否应用“直接
20、开平直接开平方法方法”、“因式分解法因式分解法”等简单方法,若不行,再考虑公式法等简单方法,若不行,再考虑公式法(适当也可考虑配方法)(适当也可考虑配方法)3、方程中有括号时,应先用整体思想考虑有没有简单方法,若看、方程中有括号时,应先用整体思想考虑有没有简单方法,若看不出合适的方法时,则把它去括号并整理为一般形式再选取合理不出合适的方法时,则把它去括号并整理为一般形式再选取合理的方法。的方法。1、直接开平方法直接开平方法因式分解法因式分解法解一元二次方解一元二次方程的方法程的方法联系联系方法的区别方法的区别适用范围适用范围配方法配方法公式法公式法因式分解法因式分解法将二将二次方次方程化程化为
21、一为一元方元方程程降降次次先配方,再降次先配方,再降次直接利用求根公式直接利用求根公式先使方程一边化为两先使方程一边化为两个一次因式相乘,另个一次因式相乘,另一边为一边为0,再分别使,再分别使各一次因式等于各一次因式等于0所有一元所有一元二次方程二次方程所有一元所有一元二次方程二次方程某些某些知识要点知识要点做人,无需去羡慕别人,也无需去花时间去羡慕别人是如何成功的,想的只要是自己如何能战胜自己,如何变得比昨天的自己强大就行。自己的磨练和坚持,加上自己的智慧和勤劳,会成功的。终将变成石佛那样受到大家的尊敬。1像我这样的人最近总是单曲循环的播放着这首像我这样的人,听很久都不会觉得腻,或许这首歌最
22、大的魅力就是共鸣。像我这样的人比如:“像我这样优秀的人人生在世,草木一秋。一闪一灭,转瞬之间。你我都轻如云烟,渺如微当花瓣离开花朵,暗香残留,香消在风起雨后,无人来嗅”忽然听到沙宝亮的这首暗香,似乎这香味把整间屋子浸染。我是如此迷恋香味,吸进的是花儿的味道,吐出来的是无尽的芬芳。轻轻一流转,无限风情,飘散,是香,是香,它永远不会在我的时光中走丢。旧的东西其实极好。学生时代喜欢写信,只是今天书信似乎早已被人遗忘,那些旧的记忆,被尘埃轻轻覆盖,曾经的笔端洇湿了笔锋,告慰着那时的心绪。现在读来,仿佛嗅到时光深处的香气,一朵墨色小花晕染了眼角,眉梢,是飞扬的青春,无知年少的轻狂,这份带不走的青涩,美丽
23、而忧伤。小心翼翼珍藏着,和母亲在一起的美好时光。母亲身体一直不好,最后的几年光景几乎是在医院渡过,然而和母亲在一起的毎一刻都是温暖美好的。四年前,母亲还是离开了这个世界,离开了我。生命就是如此脆弱,逝去和別离,陈旧的情绪某年某月的那一刻如水泻闸。水在流,云在走,聚散终有时,不贪恋一生,有你的这一程就是幸运。那是地久天长的在我的血液中渗透,永远在我的心中,在我的生命里。时光就是这么不经用,很快自己做了母亲,我才深深的知道,这样的爱,不带任何附加条件,不因万物毁灭而更改。只想守护血浓于水的旧时光,即便峥嵘岁月将容颜划伤,相信一切都是最好的安排。那时的时光无限温柔,当清水载着陈旧的往事,站在时光这头
24、,看时光那头,一切变得分明。执笔书写,旧时光的春去秋来,欢喜也好,忧伤也好,时间窖藏,流光曼卷里所有的宠爱,疼惜,活色生香的脑海存在。回忆的老墙,偶尔依靠,黄花总开不败,所有囤积下来的风声雨声,天晴天阴,都是慈悲。时光不管走多远,不管有多老旧,含着眼泪,伴着迷茫,读了一页又一页,一直都在,轻轻一碰,就让内心温软。旧的时光被揉进了岁月的折皱里,藏在心灵的沟壑,直至韶华已远,才知道走过的路不能回头,错过的已不可挽留,与岁月反复交手,沧桑中变得更加坚强。是的,折枝的命运阻挡不了。人世一生,不堪论,年华将晚易失去,听几首歌,描几次眉,便老去。无论天空怎样阴霾,总会有几缕阳光,总会有几丝暗香,温暖着身心
25、,滋养着心灵。就让旧年花落深掩岁月,把心事写就在素笺,红尘一梦云烟过,把眉间清愁交付给流年散去的烟山寒色,当冰雪消融,自然春暖花开,拈一朵花浅笑嫣然。听这位老友,絮絮叨叨地讲述老旧的故事,试图找回曾经的踪迹,却渐渐明白了流年,懂得了时光。过去的沟沟坎坎,风风雨雨,也装饰了我的梦,也算是一段好词,一幅美卷,我愿意去追忆一些旧的时光,有清风,有流云,有朝露晚霞,我确定明亮的东西始终在。静静感念,不着一言,百转千回后心灵又被唤醒,于一寸笑意中悄然绽放。唯用一枝瘦笔,剪一段旧时光,剪掉喧嚣尘世的纷纷扰扰,剪掉终日的忙忙碌碌。情也好,事也罢,细品红尘,文字相随,把寻常的日子,过得如春光般明媚。光阴珍贵,
展开阅读全文