52求解二元一次方程组课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《52求解二元一次方程组课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 52 求解 二元 一次 方程组 课件
- 资源描述:
-
1、第五章 二元一次方程组2.求解二元一次方程组(第1课时)回顾与思考还记得下面这一问题吗?设他们中有x个成人,y个儿童.昨天,我们8个人去红山公园玩,买门票花了34元.每张成人票5元,每张儿童票3元.他们到底去了几个成人、几个儿童呢?我们列出的二元一次方程组为:8,5334.xyxy我们怎么获得这个二元一次方程组的解呢?想想以前学习过的一元一次方程,能不能解决这一问题?8,5334.xyxy解:设去了x个成人,则去了(8x)个儿童,根据题意,得:用一元一次方程求解用二元一次方程组求解解:设去了x个成人,去了y个儿童,根据题意,得:观察:列出的方程和方程组有何联系?对你解二元一次方程组有何启示?5
2、3 834.xx8,5334.xyxy解:设去了x个成人,去了y个儿童,根据题意,得:用二元一次方程组求解由得:y=8x.将代入得:5x+3(8x)=34.解得:x=5.把x=5代入得:y=3.所以原方程组的解为:5,3.xy8,5334.xyxy例 解下列方程组:前面解方程组的方法取个什么名字好?解方程组的基本思路是什么?解方程组的主要步骤有哪些?思考3214,(1)3;xyxy2316,(2)413.xyxy探索与归纳 解二元一次方程组的基本思路是消解二元一次方程组的基本思路是消元,把元,把“二元二元”变为变为“一元一元”.前面解方程组是将其中一个方程的某前面解方程组是将其中一个方程的某个
3、未知数用含另一个未知数的代数式表示个未知数用含另一个未知数的代数式表示出来,并代入另一个方程中,从而消去一出来,并代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次个未知数,化二元一次方程组为一元一次方程方程.这种解方程组的方法称为代入消元这种解方程组的方法称为代入消元法,简称代入法法,简称代入法.解二元一次方程组的步骤:解二元一次方程组的步骤:第一步:在已知方程组的两个方程中选择一个适当的方程,将它的某个未知数用含有另一个未知数的代数式表示出来.第二步:把此代数式代入没有变形的另一个方程中,可得一个一元一次方程.第三步:解这个一元一次方程,得到一个未知数的值.第四步:回代求出另
4、一个未知数的值.第五步:把方程组的解表示出来.第六步:检验 用代入消元法解二元一次方程组时,尽量选取一个未知数的系数的绝对值是1的方程进行变形;若未知数的系数的绝对值都不是1,则选取系数的绝对值较小的方程变形.小窍门1.教材随堂练习2.补充练习:用代入消元法解下列方程组 327,24,3419,(1)(2)(3)323;23;0.2xyxyxyxxyxyy 3,453()1.xyxxy2,5,5,2,(1)(2)(3)(4)1.1.4.1.xxxxyyyy 它们的解依次为:练一练1.习题5.22.解答习题5.1第3题3.预习下一课内容第五章 二元一次方程组2.求解二元一次方程组(第2课时).怎
展开阅读全文