线性方程组的消元解法课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《线性方程组的消元解法课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 线性方程组 解法 课件
- 资源描述:
-
1、1 线性方程组的 消元解法第三章第三章 线性代数初步线性代数初步2 矩阵及其运算 线性代数线性代数作为独立的学科分支直到20世纪才形成,然而它的历史却非常久远。最古老的线性代数问题是线性方程组的求解线性方程组的求解,在中国古代的数学著作九章算术方程章中,已经作了比较完整的叙述,其中所述方法实质上相当于现代的对方程组的增广矩阵的行施行初等变换,消去未知量的方法。线性代数线性代数的含义随数学的发展而不断扩大。线性代数的理论和方法已经渗透到数学的许多分支,比如“以直代曲”是人们处理很多数学问题时一个很自然的想法。此外,很多实际问题的处理,最后往往归结为线性问题,它比较容易处理;同时它也是研究理论物理
2、和理论化学等不可缺少的代数基础知识。随着研究线性方程组线性方程组和变量的线性变换变量的线性变换问题的深入,矩阵在1819世纪期间应运而生,为处理线性问线性问题题提供了有力的工具,从而推动了线性代数线性代数的发展。本节的主要内容本节的主要内容1 1、线性方程组、线性方程组11 11221121 1222221 122nnnnmmmnnma xa xa xba xa xa xba xaxaxb解的讨论及其求解方法解的讨论及其求解方法(m,n 未必相等)。2 2、数表、数表mnmmnnaaaaaaaaaA212222111211的线性运算的线性运算(重要的工具)。对二元一次方程组二元一次方程组11
3、1122121 12222a xa xba xa xb我们在中学已经学过它的解法,但是实际问题中会遇到未知量个数和方程个数都很多的一次方程组,且未知量个数和方程个数未必相同。1 1 线性方程组的消元解线性方程组的消元解法法 由于二元一次方程表示平面上的一条直线,所以将一次方程称为线性方程线性方程,将一次方程组称为线线性方程组性方程组。线性方程组的一般形式线性方程组的一般形式否则称为非齐次线性方程组。则称方程组为(1)11 11221121 1222221 122nnnnmmmnnma xa xa xba xa xa xba xaxaxb其中有 n 个未知量 ,m 个方程,12,nx xx是未知
4、量的系数,ijaR是常数项。(1,;1,)im jn若右端常数项 均为零,1,mbbR12,mb bb齐次线性方程组;1、线性方程组是否有解?将要研究的问题将要研究的问题3、有解时,如何求出全部的解?2、若有解,解是否唯一?研究的思路和途径研究的思路和途径 1、在中学代数中的加减消元法的基础上,结合具体的线性方程组,导出求解一般方程组的通用方法:高斯消元法;2、从实际例子出发,利用高斯消元法观察解存在与否的判断方法。求解线性方程组123123123224(1)21(2)442(3)xxxxxxxxx 解解:首先,用(2)消去(1)(3)中的未知量 x1,(-2)(2)+(1),(-4)(2)+
5、(3)得 例例1由2323322(4)342(5)xxxx 该方程组比原方程组少一个未知量。由(5)-(4)得由(-1/2)(6)得32 (7)x 最后,将(7)代回(4)中,即消去(4)中的 x3,由2(7)+(4)得236 (8)x2323322(4)342(5)xxxx 其次,用(4)消去(5)中的未知量 x2,324(6)x 这比原方程组又少了一个未知量。由(-1/3)(8)得22 (9)x 123123123224(1)21(2)442(3)xxxxxxxxx32 (7)x 236 (8)x将(7)(9)代回(2)中,即消去(2)中的 x2,x3,由(-2)(7)+(2),(2)-(
6、9)得11x 故原方程组的解为1231,2,2xxx 从上述求解过程可以看出从上述求解过程可以看出 加减消元法的基本思想就是:利用方程之间的算术运算,每次消去一个未知量,得到一个比原方程组少一个未知量的方程组,一次一次进行下去,直至得到便于求解的一个形式简单的方程。为了便于将此方法应用到任意形式的方程组的求解,仍以例例1 1为例,完整规范的写出它的解题步骤。解解:第一步,为了便于运算,互换(1)与(2)的位置12312312321(2)224(1)442(3)xxxxxxxxx 第二步,消去第一个方程下面的各个方程中的 x1,(1)-2(2),(3)-4(2)得求解线性方程组123123123
7、224(1)21(2)442(3)xxxxxxxxx 例例11123232321 (2)322(4)342(5)xxxxxxx 12312312321(2)224(1)442(3)xxxxxxxxx(1)-2(2),(3)-4(2)得 第三步,消去第二个方程下面的各个方程中的 x2,(5)-(4)得 此时方程组中下一个方程比上一个方程少一个未知量,形状如阶梯,称此方程组为阶梯形方程组。123232321 (2)322(4)342(5)xxxxxxx 第三步,消去第二个方程下面的各个方程中的 x2,(5)-(4)得12323321(2)322 (4)(6)24xxxxxx 第四步,使(6)中的
8、x3 的系数变为1,(-1/2)(6)得12323321(2)322 (4)(6)24xxxxxx 第五步,消去(2)(4)中的 x3,12323321(2)322 (4)(7)2xxxxxx(2)-2(7),(4)+2(7)第五步,消去(2)(4)中的 x3,12323321(2)322 (4)(7)2xxxxxx(2)-2(7),(4)+2(7)(-1/3)(9)得 第六步,使(9)中的 x2 的系数变为1,1223 3(8)3 6 (9)(7)2xxxx(-1/3)(9)得 第六步,使(9)中的 x2 的系数变为1,1223 3(8)3 6 (9)(7)2xxxx 第七步,消去(8)中的
9、x2,1223 3(8)2 (10)(7)2xxxx (8)-(10)得 第七步,消去(8)中的x2,1223 3(8)2 (10)(7)2xxxx (8)-(10)得由此得到了方程组的解。思考思考:上述求解过程用到了哪些方法,从而逐步对原方程组进行消元变简?123 1 22xxx 用到了如下三种变换用到了如下三种变换1、交换两个方程的顺序;3、用一个数乘某个方程后加到另一个方程上;2、用一个非零常数乘某个方程;称上述三种变换为线性方程组的初等变换。初等变换的作用在于初等变换的作用在于 将方程组的形式变的简单易求,且新方程组与原方程组是同解方程组。用消元法求解线性方程组的实质用消元法求解线性方
10、程组的实质 对方程组施行一系列同解的初等变换,将它逐步化简以求其解。思考思考:方程组的解和未知量符号有没有关系?那和什么有关呢?没有和未知量的系数以及右端的常数项有关!问题问题:在用初等变换求解方程组时,本质上是对什么在运算?什么在变化?未知量的系数以及右端的常数项!基于此,在解题时可将未知量舍去不写;此时就出现了由未知量系数以及右端常数项组成的数表:经初等变换求解线性方程组的这一思路,反映了一般线性方程组的求解规律。此数表是按各数在方程组中的相对位置排成的。加上常数项得数表(1)(2)称上述矩形表为矩阵,横的排称为行,竖的排称为列,其中的数称为矩阵的元素。矩阵(1)称为方程组的系数矩阵,记为
11、A,矩阵(2)称为方程组的增广矩阵,记为.A12312312322421442xxxxxxxxx212112414A212411214142A 定义定义1对于一般的线性方程组对于一般的线性方程组111212122212nnmmmnaaaaaaaaaA11 11221121 1222221 122nnnnmmmnnma xa xa xba xa xa xba xaxaxb11121121222212nnmmmnmaaabaaabAaaab 增广矩阵可以看成线性方程组的简便写法,因此对于方程组的加减消元法用到的三种初等变换也只对增广矩阵进行,反映在矩阵上即为3、用一个数乘矩阵的某一行后加到另一行上
展开阅读全文