书签 分享 收藏 举报 版权申诉 / 75
上传文档赚钱

类型函数与方程PPT教学课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:4371456
  • 上传时间:2022-12-03
  • 格式:PPT
  • 页数:75
  • 大小:463.41KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《函数与方程PPT教学课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    函数 方程 PPT 教学 课件
    资源描述:

    1、函数与方程PPT教学课件(2 2)几个等价关系)几个等价关系 方程方程f f(x x)=0)=0有实数根有实数根 函数函数y y=f f(x x)的图象与的图象与_有有 交点交点 函数函数y y=f f(x x)有有_._.(3)(3)函数零点的判定(零点存在性定理)函数零点的判定(零点存在性定理)如果函数如果函数y y=f f(x x)在区间在区间a a,b b上的图象是连续不上的图象是连续不 断的一条曲线,并且有断的一条曲线,并且有_,_,那么函那么函 数数y y=f f(x x)在区间在区间_内有零点内有零点,即存在即存在c c(a a,b b),),使得使得_,这个,这个_也就是也就是

    2、f f(x x)=0)=0的根的根.f f(a a)f f(b b)00)0)的图象与零点的关系的图象与零点的关系00=0=000)0)的图象的图象与与x x轴的交点轴的交点 _无交点无交点零点个数零点个数_(x x1 1,0),0),(x x2 2,0),0)(x x1 1,0),0)无无一个一个两个两个3.3.二分法二分法 (1 1)二分法的定义)二分法的定义 对于在区间对于在区间a a,b b上连续不断且上连续不断且_的的 函数函数y y=f f(x x),通过不断地把函数,通过不断地把函数f f(x x)的零点所在的区的零点所在的区 间间_,_,使区间的两个端点逐步逼近使区间的两个端点

    3、逐步逼近_,_,进进 而得到零点近似值的方法叫做二分法而得到零点近似值的方法叫做二分法.(2 2)用二分法求函数)用二分法求函数f f(x x)零点近似值的步骤零点近似值的步骤 第一步,确定区间第一步,确定区间a a,b b,验证,验证_,_,给定精确度给定精确度 ;第二步,求区间(第二步,求区间(a a,b b)的中点)的中点x x1 1;f f(a a)f f(b b)0)0一分为二一分为二零点零点f f(a a)f f(b b)0)0第三步,计算第三步,计算_:若若_,则,则x x1 1就是函数的零点;就是函数的零点;若若_,则令,则令b b=x x1 1(此时零点此时零点x x0 0(

    4、a a,x x1 1););若若_,则令,则令a a=x x1 1(此时零点此时零点x x0 0(x x1 1,b b););第四步,判断是否达到精确度第四步,判断是否达到精确度 :即若:即若|a a-b b|,|,则则得到零点近似值得到零点近似值a a(或(或b b);否则重复第二、三、四步否则重复第二、三、四步.f f(x x1 1)f f(a a)f f(x x1 1)0)0f f(x x1 1)f f(b b)0)0f f(x x1 1)=0)=0基础自测基础自测1.1.若函数若函数f f(x x)=)=axax+b b有一个零点为有一个零点为2,2,则则g g(x x)=)=bxbx

    5、2 2-axax的的 零点是零点是 ()A.0A.0,2 B.02 B.0,C.0C.0,D.2,D.2,解析解析 由由f f(2)=2(2)=2a a+b b=0,=0,得得b b=-2=-2a a,g g(x x)=-2)=-2axax2 2-axax=-=-axax(2(2x x+1).+1).令令g g(x x)=0)=0,得,得x x=0,=0,x x=g g(x x)的零点为)的零点为0 0,212121,21.21C2.2.函数函数f f(x x)=3)=3axax-2-2a a+1+1在在-1-1,1 1上存在一个零点,上存在一个零点,则则a a的取值范围是的取值范围是 ()A

    6、.B.A.B.a a11 C.D.C.D.解析解析 f f(x x)=3)=3axax-2-2a a+1+1在在-1-1,11上存在一个零点,上存在一个零点,则则f f(-1)(-1)f f(1)0,(1)0,即即51a511a151aa或.151aa或D3.3.函数图象与函数图象与x x轴均有公共点,但不能用二分法求公轴均有公共点,但不能用二分法求公 共点横坐标的是共点横坐标的是 ()解析解析 图图B B不存在包含公共点的闭区间不存在包含公共点的闭区间a a,b b使函使函 数数f f(a a)f f(b b)0.0.B 4.4.下列函数中在区间下列函数中在区间1,21,2上一定有零点的是(

    7、上一定有零点的是()A.A.f f(x x)=3)=3x x2 2-4-4x x+5+5 B.B.f f(x x)=)=x x3 3-5-5x x-5-5 C.C.f f(x x)=)=mxmx2 2-3-3x x+6+6 D.D.f f(x x)=e)=ex x+3+3x x-6-6 解析解析 对选项对选项D D,f f(1 1)=e-30=e-300,f f(1 1)f f(2 2)0.0.D5.5.设函数设函数 则函数则函数f f(x x)-)-的零点是的零点是_._.解析解析 当当x x11时,时,当当x x11时,时,(舍去大于舍去大于1 1的根的根).).的零点为的零点为 ,)1,

    8、(2),1 22)(2xxxxxxf41,04122,041)(xxf即,0412,041)(2xxxf即.89x252x41)(xf.252,89252,89 题型一题型一 零点的判断零点的判断【例例1 1】判断下列函数在给定区间上是否存在零点判断下列函数在给定区间上是否存在零点.(1)(1)f f(x x)=x x2 2-3-3x x-18-18,x x1 1,8 8;(2)(2)f f(x x)=log=log2 2(x x+2)-+2)-x x,x x1 1,3 3.第(第(1 1)问利用零点的存在性定理或)问利用零点的存在性定理或 直接求出零点,第(直接求出零点,第(2 2)问利用零

    9、点的存在性定理)问利用零点的存在性定理 或利用两图象的交点来求解或利用两图象的交点来求解.思维启迪思维启迪题型分类题型分类 深度剖析深度剖析解解 (1 1)方法一方法一f f(1 1)=1=12 2-3-31-18=-2001-18=-2008-18=220,f f(1)(1)f f(8)0(8)log3-1log2 22-1=0,2-1=0,f f(3)=log(3)=log2 25-3log5-3log2 28-3=0,8-3=0,f f(1 1)f f(3 3)00,故故f f(x x)=log)=log2 2(x x+2)-+2)-x x,x x11,33存在零点存在零点.方法二方法二

    10、 设设y y=log=log2 2(x x+2),+2),y y=x x,在同一直角坐标系在同一直角坐标系中画出它们的图象,中画出它们的图象,从图象中可以看出当从图象中可以看出当11x x33时,时,两图象有一个交点,两图象有一个交点,因此因此f f(x x)=log)=log2 2(x x+2)-+2)-x x,x x11,33存在零点存在零点.函数的零点存在性问题常用的办法函数的零点存在性问题常用的办法有三种有三种:一是用定理,二是解方程一是用定理,二是解方程,三是用图象三是用图象.值得值得说明的是,零点存在性定理是充分条件,而并非是说明的是,零点存在性定理是充分条件,而并非是必要条件必要

    11、条件.探究提高探究提高知能迁移知能迁移1 1 判断下列函数在给定区间上是否存判断下列函数在给定区间上是否存 在零点在零点.(1 1)f f(x x)=)=x x3 3+1;+1;(2 2)x x(0 0,1 1).解解 (1 1)f f(x x)=)=x x3 3+1=(+1=(x x+1)(+1)(x x2 2-x x+1),+1),令令f f(x x)=0)=0,即,即(x x+1)(+1)(x x2 2-x x+1)=0,+1)=0,x x=-1,=-1,f f(x x)=)=x x3 3+1+1有零点有零点-1.-1.(2 2)方法一方法一 令令f f(x x)=0)=0,x x=1,

    12、1,而而1 1(0,1),(0,1),x x(0,1)(0,1)不存在零点不存在零点.,1)(xxxf,01,012xxxx得,1)(xxxf方法二方法二 令令 y y=x x,在同一平面直角坐标系中,在同一平面直角坐标系中,作出它们的图象作出它们的图象,从图中可以看出当从图中可以看出当00 x x11),1),判断判断 f f(x x)=0)=0的根的个数的根的个数.解解 设设f f1 1(x x)=)=a ax x(a a1),1),f f2 2(x x)=)=则则f f(x x)=0)=0的解即为的解即为 f f1 1(x x)=)=f f2 2(x x)的解的解,即为函数即为函数f f

    13、1 1(x x)与与f f2 2(x x)图象交点的横坐标图象交点的横坐标.在同一坐标系中,作出函数在同一坐标系中,作出函数 f f1 1(x x)=)=a ax x(a a1)1)与与f f2 2(x x)=)=的图象的图象(如如 图所示)图所示).两函数图象有且只有一个交点,即方程两函数图象有且只有一个交点,即方程f f(x x)=0)=0有且有且 只有一个根只有一个根.12)(xxaxfx,12xx11312xxx题型三题型三 零点性质的应用零点性质的应用 【例例3 3】(12(12分分)已知函数已知函数f f(x x)=-)=-x x2 2+2e+2ex x+m m-1,-1,g g(

    14、x x)=)=x x+(x x0).0).(1)(1)若若g g(x x)=)=m m有零点,求有零点,求m m的取值范围;的取值范围;(2)(2)确定确定m m的取值范围,使得的取值范围,使得g g(x x)-)-f f(x x)=0)=0有两个有两个 相异实根相异实根.(1 1)可结合图象也可解方程求之)可结合图象也可解方程求之.(2 2)利用图象求解)利用图象求解.思维启迪思维启迪x2e解解 (1 1)方法一方法一 等号成立的条件是等号成立的条件是x x=e.=e.故故g g(x x)的值域是的值域是2e2e,+)+),4 4分分因而只需因而只需m m2e2e,则,则 g g(x x)=

    15、)=m m就就有零点有零点.6.6分分方法二方法二 作出作出 的图象如图:的图象如图:4 4分分 可知若使可知若使g g(x x)=)=m m有零点,则只需有零点,则只需m m2e.62e.6分分e,2e2e)(22xxxgxxxg2e)(方法三方法三 解方程由解方程由g g(x x)=m m,得,得x x2 2-mxmx+e+e2 2=0.=0.此方程有大于零的根,此方程有大于零的根,4 4分分等价于等价于 故故m m2e.62e.6分分(2)(2)若若g g(x x)-)-f f(x x)=0)=0有两个相异的实根,有两个相异的实根,即即g g(x x)=f f(x x)中函数)中函数g

    16、g(x x)与)与f f(x x)的图象有两个)的图象有两个不同的交点,不同的交点,0e40222mm故,e2e20mmm或作出作出 (x x00)的图象)的图象.f f(x x)=-=-x x2 2+2e+2ex x+m m-1-1=-(=-(x x-e)-e)2 2+m m-1+e-1+e2 2.其对称轴为其对称轴为x x=e=e,开口向下,开口向下,最大值为最大值为m m-1+e-1+e2 2.10.10分分故当故当m m-1+e-1+e2 22e,2e,即即m m-e-e2 2+2e+1+2e+1时,时,g g(x x)与与f f(x x)有两个交点,有两个交点,即即g g(x x)-

    17、)-f f(x x)=0)=0有两个相异实根有两个相异实根.m m的取值范围是(的取值范围是(-e-e2 2+2e+1,+).12+2e+1,+).12分分xxxg2e)(此类利用零点求参数的范围的问题,可此类利用零点求参数的范围的问题,可 利用方程,但有时不易甚至不可能解出,而转化为构利用方程,但有时不易甚至不可能解出,而转化为构造两函数图象求解造两函数图象求解,使得问题简单明了使得问题简单明了.这也体现了这也体现了当不是求零点,而是利用零点的个数,或有零点时求当不是求零点,而是利用零点的个数,或有零点时求参数的范围,一般采用数形结合法求解参数的范围,一般采用数形结合法求解.探究提高探究提高

    18、知能迁移知能迁移3 3 是否存在这样的实数是否存在这样的实数a a,使函数使函数f f(x x)=)=x x2 2+(3 (3a a-2)-2)x x+a a-1-1在区间在区间-1,3-1,3上与上与x x轴恒有一个零点轴恒有一个零点,且只有一个零点且只有一个零点.若存在若存在,求出范围求出范围,若不存在若不存在,说说 明理由明理由.解解 =(3=(3a a-2)-2)2 2-4(-4(a a-1)0-1)0 若实数若实数a a满足条件满足条件,则只需则只需f f(-1)(-1)f f(3)0(3)0即可即可.f f(-1)(-1)f f(3)=(1-3(3)=(1-3a a+2+2+a a

    19、-1)(9+9-1)(9+9a a-6+-6+a a-1)-1)=4(1-=4(1-a a)(5)(5a a+1)0.+1)0.所以所以a a 或或a a1.1.51 检验检验:(1):(1)当当f f(-1)=0(-1)=0时,时,a a=1.=1.所以所以f f(x x)=)=x x2 2+x x.令令f f(x x)=0)=0,即,即x x2 2+x x=0=0,得,得x x=0=0或或x x=-1.=-1.方程在方程在-1,3-1,3上有两根,不合题意,故上有两根,不合题意,故a a1.1.(2)(2)当当f f(3)=0(3)=0时,时,a a=解之得解之得x x=或或x x=3.=

    20、3.方程在方程在-1,3-1,3上有两根上有两根,不合题意不合题意,故故a a综上所述综上所述,a a 1.1.,51,)(.)(05651305651322 xxxfxxxf即即令令此时此时52 51 51 1.1.函数零点的判定常用的方法有:零点存在性定函数零点的判定常用的方法有:零点存在性定 理;数形结合;解方程理;数形结合;解方程f f(x x)=0.=0.2.2.研究方程研究方程f f(x x)=)=g g(x x)的解,实质就是研究的解,实质就是研究G G(x x)=)=f f(x x)-g g(x x)的零点)的零点.3.3.二分法是求方程的根的近似值的一种计算方法二分法是求方程

    21、的根的近似值的一种计算方法.其其 实质是通过不断地实质是通过不断地“取中点取中点”来逐步缩小零点所在来逐步缩小零点所在 的范围,当达到一定的精确度要求时,所得区间的的范围,当达到一定的精确度要求时,所得区间的 任一点就是这个函数零点的近似值任一点就是这个函数零点的近似值.方法与技巧方法与技巧思想方法思想方法 感悟提高感悟提高1.1.对于函数对于函数y y=f f(x x)()(x xD D),),我们把使我们把使f f(x x)=0)=0的实数的实数x x叫叫 做函数的零点做函数的零点,注意以下几点注意以下几点:(1)(1)函数的零点是一个实数函数的零点是一个实数,当函数的自变量取这个当函数的

    22、自变量取这个 实数时实数时,其函数值等于零其函数值等于零.(2)(2)函数的零点也就是函数函数的零点也就是函数y y=f f(x x)的图象与的图象与x x轴的交点轴的交点 的横坐标的横坐标.(3)(3)一般我们只讨论函数的实数零点一般我们只讨论函数的实数零点.(4)(4)函数的零点不是点函数的零点不是点,是方程是方程f f(x x)=0)=0的根的根.失误与防范失误与防范2.2.对函数零点存在的判断中对函数零点存在的判断中,必须强调必须强调:(1)(1)f f(x x)在在a a,b b上连续上连续;(2)(2)f f(a a)f f(b b)0;)0=10,f f(-1-1)f f(0 0

    23、)00),0),则则y y=f f(x x)()A.A.在区间在区间 (1,e)(1,e)内均有零点内均有零点 B.B.在区间在区间 (1,e)(1,e)内均无零点内均无零点 C.C.在区间在区间 内有零点,在区间内有零点,在区间(1,e)(1,e)内无零点内无零点 D.D.在区间在区间 内无零点内无零点,在区间在区间(1,e)(1,e)内有零点内有零点 xxxfln31)(),1,e1(),1,e1()1,e1()1,e1(解析解析 因为因为因此因此f f(x x)在在 内无零点内无零点.因此因此f f(x x)在在(1(1,e)e)内有零点内有零点.答案答案 D D )1,e1(,0)1e

    24、31(31)1ln31()e1lne131()1()e1(ff.093ee)lne31()1ln131(e)1(ff又3.3.(20092009福建文,福建文,1111)若函数若函数f f(x x)的零点与)的零点与 g g(x x)=4)=4x x+2+2x x-2-2的零点之差的绝对值不超过的零点之差的绝对值不超过0.250.25,则,则 f f(x x)可以是可以是 ()A.A.f f(x x)=4)=4x x-1 B.-1 B.f f(x x)=()=(x x-1)-1)2 2 C.C.f f(x x)=e)=ex x-1 D.-1 D.解析解析 g g(x x)=4)=4x x+2+

    25、2x x-2-2在在R R上连续且上连续且 设设g g(x x)=4)=4x x+2+2x x-2-2的零点为的零点为x x0 0,则则 )21ln()(xxf.01212)21(,02322212)41(gg,21410 x又又f f(x x)=4)=4x x-1-1零点为零点为 f f(x x)=()=(x x-1)-1)2 2零点为零点为x x=1;=1;f f(x x)=e)=ex x-1-1零点为零点为x x=0;=0;零点为零点为答案答案 A A .41|41|,4141000 xx;41x)21ln()(xxf.23x 4.4.方程方程|x x2 2-2-2x x|=|=a a2

    26、 2+1(+1(a aR R+)的解的个数是的解的个数是 ()A.1 B.2 C.3 D.4A.1 B.2 C.3 D.4 解析解析 a aR R+,a a2 2+11.+11.而而y y=|=|x x2 2-2-2x x|的图象如图,的图象如图,y y=|=|x x2 2-2-2x x|的图象与的图象与y y=a a2 2+1+1 的图象总有两个交点的图象总有两个交点.方程有两解方程有两解.B5.5.方程方程|x x|(|(x x-1)-1)-k k=0=0有三个不相等的实根,则有三个不相等的实根,则k k的取的取 值范围是值范围是 ()A.B.A.B.C.D.C.D.解析解析 本题研究方程

    27、根的个数问题本题研究方程根的个数问题,此类问题首选此类问题首选 的方法是图象法即构造函数利用函数图象解题的方法是图象法即构造函数利用函数图象解题,其其 次是直接求出所有的根次是直接求出所有的根.本题显然考虑第一种方法本题显然考虑第一种方法.)0,41()41,0(),41()41,(如图,作出函数如图,作出函数y y=|=|x x|(|(x x-1)-1)的的图象,由图象知当图象,由图象知当k k 时,时,函数函数y y=k k与与y y=|=|x x|(|(x x-1)-1)有有3 3个不同的个不同的交点,即方程有交点,即方程有3 3个实根个实根.答案答案 A A)0,41(6.6.设设f

    28、f(x x)=)=x x3 3+bxbx+c c(b b0)(-10)(-1x x1),1),且且 则方程则方程f f(x x)=0)=0在在-1,1-1,1内内()()A.A.可能有可能有3 3个实数根个实数根 B.B.可能有可能有2 2个实数根个实数根 C.C.有唯一的实数根有唯一的实数根 D.D.没有实数根没有实数根 解析解析 f f(x x)=x x3 3+bxbx+c c (b b00),),f f(x x)=3)=3x x2 2+b b0,0,f f(x x)在)在-1,1-1,1上为增函数上为增函数,又又 f f(x x)在)在 内存在唯一零点内存在唯一零点.,0)21()21(

    29、ff,0)21()21(ff)21,21(C二、填空题二、填空题7.7.若函数若函数f f(x x)=)=x x2 2-axax-b b的两个零点是的两个零点是2 2和和3 3,则函数,则函数 g g(x x)=)=bxbx2 2-axax-1-1的零点是的零点是_._.解析解析 g g(x x)=-6=-6x x2 2-5-5x x-1-1的零点为的零点为 .65,033,02222bababa得由.31,2131,218.8.若函数若函数f f(x x)=)=x x2 2+axax+b b的两个零点是的两个零点是-2-2和和3,3,则不等式则不等式 afaf(-2(-2x x)0)0的解集

    30、是的解集是_._.解析解析 f f(x x)=x x2 2+axax+b b的两个零点是的两个零点是-2-2,3.3.-2 -2,3 3是方程是方程x x2 2+axax+b b=0=0的两根,的两根,由根与系数的关系知由根与系数的关系知 f f(x x)=)=x x2 2-x x-6.-6.不等式不等式afaf(-2(-2x x)0)0,即即-(4-(4x x2 2+2+2x x-6)0-6)0 2 2x x2 2+x x-30,-30,解集为解集为,61,3232baba.123|xx.123|xx9.9.已知已知y y=x x(x x-1)(-1)(x x+1)+1)的图象如图所示的图象

    31、如图所示,今考虑今考虑f f(x x)=)=x x(x x-1)(-1)(x x+1)+0.01,+1)+0.01,则方程则方程f f(x x)=0)=0 有三个实根;有三个实根;当当x x-1-1时时,恰有一实根恰有一实根(有一有一 实根且仅有一实根实根且仅有一实根););当当-1-1x x00时,恰有一实根;时,恰有一实根;当当00 x x111时,恰有一实根时,恰有一实根.则正确结论的编号为则正确结论的编号为_._.解析解析 f f(-2-2)=-2=-2(-3)(-3)(-1)+0.01=-5.990,(-1)+0.01=-5.990=0.010,即,即f f(-2)(-2)f f(-

    32、1)0(-1)0,(0)=0.010,由图知由图知f f(x x)=0)=0在在(-1,0)(-1,0)上没有实数上没有实数根根,所以不正确所以不正确.又又f f(0.5)=0.5(0.5)=0.5(-0.5)(-0.5)1.5+0.01=-0.3650,1.5+0.01=-0.3650,(1)=0.010,即即f f(0.5)(0.5)f f(1)0,(1)0,所以所以f f(x x)=0.)=0.在在(0.5,1)(0.5,1)上必有一个实根上必有一个实根,且且f f(0)(0)f f(0.50.5)0,00且且f f(x x)在(在(1 1,+)上是增函数,)上是增函数,f f(x x)

    33、0,0,f f(x x)=0)=0在(在(1 1,+)上没有实根)上没有实根.不正确不正确.并且由此可知也正确并且由此可知也正确.答案答案 三、解答题三、解答题10.10.已知函数已知函数f f(x x)=4)=4x x+m m22x x+1+1有且仅有一个零点,求有且仅有一个零点,求 m m的取值范围,并求出该零点的取值范围,并求出该零点.解解 f f(x x)=4=4x x+m m22x x+1+1有且仅有一个零点,有且仅有一个零点,即方程即方程(2(2x x)2 2+m m22x x+1=0+1=0仅有一个实根仅有一个实根.设设2 2x x=t t(t t0)0),则,则t t2 2+m

    34、tmt+1=0.+1=0.当当=0,=0,即即m m2 2-4=0-4=0,m m=-2=-2时,时,t t=1;=1;m m=2=2时,时,t t=-1=-1不合题意,舍去,不合题意,舍去,2 2x x=1=1,x x=0=0符合题意符合题意.当当00,即,即m m22或或m m-20,=10,则应有则应有f f(2)0,(2)0,又又f f(2 2)=2=22 2+(m m-1-1)2+1,2+1,m m .23若若f f(x x)=0)=0在区间在区间0,20,2上有两解上有两解,则则由可知由可知m m-1.-1.,123,231313.012)1(41304)1(,0)2(221002

    35、mmmmmmmmfm或12.12.已知已知a a是实数,函数是实数,函数f f(x x)=2)=2axax2 2+2+2x x-3-3-a a.如果函数如果函数 y y=f f(x x)在区间在区间-1-1,1 1上有零点上有零点,求求a a的取值范围的取值范围.解解 (1 1)当)当a a=0=0时,时,f f(x x)=2)=2x x-3.-3.令令2 2x x-3=0,-3=0,得得x x=-1-1,1 1 f f(x x)在)在-1-1,1 1上无零点,故上无零点,故a a0.0.(2 2)当)当a a00时,时,f f(x x)=2)=2axax2 2+2+2x x-3-3-a a的

    36、对称轴为的对称轴为 23.21ax 当当 -1,-1,即即00a a 时,时,须使须使a a的解集为的解集为 .当当-1 0,-1 时,时,须使须使解得解得a a1,1,a a的取值范围是的取值范围是1 1,+).+).a2121a2121.150)1(0)1(aaff即即.103210)1(0)21(aaafaf即即(3 3)当)当a a00时,时,当当0 1,01,1,即即 a a00时,时,须有须有a a的解集为的解集为 .综上所述,综上所述,a a的取值范围是的取值范围是a212115,0)1(0)1(aaff即).,1 273,(返回返回 第二节第二节 醇醇 酚酚(第一课时)(第一课

    37、时)酒精饮料酒精饮料的中乙醇的中乙醇酒精燃料酒精燃料的中乙醇的中乙醇汽车发动机防冻汽车发动机防冻液中的乙二醇液中的乙二醇化妆品中化妆品中的丙三醇的丙三醇茶叶中的茶多酚茶叶中的茶多酚药皂中的苯酚药皂中的苯酚漂亮漆器上的漆酚漂亮漆器上的漆酚教学目标:1、知道醇的的主要类型,能列举一些常见的醇并说明其用途。2、能够利用系统命名法对简单的饱和一元醇进行命名。3、了解饱和一元醇的沸点和水溶性特点。4、根据饱和一元醇的结构特征,说明醇的化学性质及应用。1、CH3CH2OH 2、3、4、5、6、OHCH2OH左侧有机物中属于醇的是 ;属于酚的是 。两者相似之处?体会醇与酚的区别。1 3 42 5 6CH3C

    38、H2OH乙醇乙醇乙二醇乙二醇丙三醇丙三醇苯酚苯酚茶多酚茶多酚漆酚漆酚思考思考讨论讨论什么是醇?什么是酚?什么是醇?什么是酚?醇:烃分子中醇:烃分子中饱和碳原子上饱和碳原子上的一个或几的一个或几个氢原子被羟基取代生成的有机化合物个氢原子被羟基取代生成的有机化合物 酚:芳香烃分子中酚:芳香烃分子中苯环上苯环上的一个或几个的一个或几个氢原子被羟基取代生成的有机化合物氢原子被羟基取代生成的有机化合物一、醇的概述一、醇的概述(1)根据羟基的数目分根据羟基的数目分一元醇一元醇:如:如CH3OH 甲醇甲醇二元醇二元醇:CH2OH CH2OH乙二醇乙二醇多元醇多元醇:CH2OH CHOH CH2OH丙三醇丙三

    39、醇(2)根据烃基是否饱和分根据烃基是否饱和分饱和醇饱和醇(含含饱和饱和一元醇一元醇)不饱和醇不饱和醇1.1.醇的分类醇的分类CH2=CHCH2OH名名称称俗名俗名 色色、态态、味味毒毒性性水溶性水溶性用途用途甲甲醇醇木醇木醇 无色无色、有酒有酒精气味精气味、具具有挥性液体有挥性液体有有毒毒与水互与水互溶溶燃料燃料、化工化工原料原料乙乙二二醇醇无色、粘稠、无色、粘稠、甜味、液体甜味、液体无无毒毒与水互与水互溶溶防冻液、合防冻液、合成涤纶、成涤纶、丙丙三三醇醇甘油甘油 无色、粘稠、无色、粘稠、甜味、液体甜味、液体无无毒毒与水互与水互溶溶化妆品、制化妆品、制炸药(硝化炸药(硝化甘油)甘油)2.2.几

    40、种典型的醇几种典型的醇的物理性质和用途:的物理性质和用途:1.选主链。选主链。选含选含OHOH的最长碳链作主链,根据碳的最长碳链作主链,根据碳原子数目称为某醇。原子数目称为某醇。2.编号。编号。从离羟基最近的一端开始编号。从离羟基最近的一端开始编号。3.定名称。定名称。在取代基名称之后,主链名称之前用在取代基名称之后,主链名称之前用阿拉伯数字标出阿拉伯数字标出OHOH的位次,且主链称为某醇。的位次,且主链称为某醇。羟基的个数用羟基的个数用“二二”、“三三”等表示。等表示。3.3.醇的命名醇的命名4.4.醇的重要物理性质醇的重要物理性质阅读阅读P56页表页表2-2-1相对分子质量相近的醇与相对分

    41、子质量相近的醇与烷烃、烯烃的沸点比较烷烃、烯烃的沸点比较名称名称相对分子质量相对分子质量沸点沸点/甲醇甲醇3265乙烷乙烷3089乙烯乙烯28102乙醇乙醇4678丙烷丙烷4442丙烯丙烯4248结论结论从表从表2-2-12-2-1数据可以看出:数据可以看出:饱和一饱和一元醇的沸点比与其相对质量接近的烷烃或烯元醇的沸点比与其相对质量接近的烷烃或烯烃的沸点要高。烃的沸点要高。H H O O H H H O C2H5原因原因这主要是因为一个醇分子中羟基上这主要是因为一个醇分子中羟基上的氢原子可与另一个醇分子中羟基上的氧原的氢原子可与另一个醇分子中羟基上的氧原子相互吸引形成氢键,增强了醇分子间的相子

    42、相互吸引形成氢键,增强了醇分子间的相互作用互作用比较比较下表含相同碳原子数、不同羟基数的醇的沸点下表含相同碳原子数、不同羟基数的醇的沸点名称名称分子中羟基数目分子中羟基数目沸点沸点/乙醇乙醇178乙二醇乙二醇2197.31-丙醇丙醇197.21,2-丙二醇丙二醇21881,2,3-丙三醇丙三醇3259结论结论含相同碳原子数、不同羟基数的多元醇的沸点含相同碳原子数、不同羟基数的多元醇的沸点比一元醇二元醇都高,多元醇具有易溶于水的性质。比一元醇二元醇都高,多元醇具有易溶于水的性质。原因原因是因为多元醇分子中羟基多,一方面增加了分子间是因为多元醇分子中羟基多,一方面增加了分子间形成氢键的几率;另一方

    43、面增加了醇与水分子间形成氢键的几率。形成氢键的几率;另一方面增加了醇与水分子间形成氢键的几率。饱和一元醇分子中碳原子数饱和一元醇分子中碳原子数1 13 3的醇能与水以任意的醇能与水以任意比例互溶;分子中碳原子数比例互溶;分子中碳原子数4 41111的醇为油状液体,的醇为油状液体,仅部分溶与水;分子中碳原子更多的高级醇为固体,仅部分溶与水;分子中碳原子更多的高级醇为固体,不溶与水;不溶与水;5.5.饱和一元醇的水溶性饱和一元醇的水溶性【规律】CnH2n+1OH可以看成是H-OH分子中的一个H原子被烷基取代后的产物。当R-较小时,醇分子与水分子形成的氢键使醇与水能互溶;随着分子中的R-的增大,醇的

    44、物理性质接近烷烃。小结 饱和一元醇饱和一元醇1、通式通式 CnH2n+1OH 2、随着、随着C数的增多,熔沸点逐渐增,相对密度呈增大趋数的增多,熔沸点逐渐增,相对密度呈增大趋势。势。对于同碳数的,支链越多,熔沸点越低,密度越小。对于同碳数的,支链越多,熔沸点越低,密度越小。3、随着碳数增多,水溶性降低。、随着碳数增多,水溶性降低。4、比、比Mr接近的烷烃或烯烃的沸点要高(氢键的影响)接近的烷烃或烯烃的沸点要高(氢键的影响).二、醇的化学性质二、醇的化学性质阅读阅读P57P57交流研讨,以交流研讨,以1-1-丙醇为例分析结构丙醇为例分析结构1 1 羟基的反应羟基的反应(1)取代反应取代反应 醇与

    45、浓的氢卤酸(醇与浓的氢卤酸(HCIHCI、HBrHBr、HIHI)发生反应时分)发生反应时分子中的碳氧键断裂,羟基被卤原子取代,生成相应的子中的碳氧键断裂,羟基被卤原子取代,生成相应的卤代烃和水卤代烃和水C2H5OH +HBr C2H5Br +H2O 在酸做催化剂及加热下,醇发生分子间的取代生在酸做催化剂及加热下,醇发生分子间的取代生成醚和水成醚和水(2)消去反应消去反应 含有含有 B BH H醇在浓硫酸及一定温度下能发醇在浓硫酸及一定温度下能发生消去反应生成烯烃生消去反应生成烯烃 如如CHCH3 3OHOH,没有邻位碳原子,不能发生,没有邻位碳原子,不能发生消去反应。还有如:消去反应。还有如

    46、:思考思考是不是所有的醇都能发生消去是不是所有的醇都能发生消去反应呢?反应呢?2 2、羟基中氢的反应、羟基中氢的反应(1)与活泼金属的反应与活泼金属的反应2CH3CH2OH+2Na2CH3CH2ONa+H2问题问题为什么乙醇与金属钠的反应要比水与金为什么乙醇与金属钠的反应要比水与金属钠的反应缓和的多?烃基对羟基氢的活泼性有属钠的反应缓和的多?烃基对羟基氢的活泼性有哪些影响?哪些影响?(2)与羧酸反应与羧酸反应 乙醇和乙酸在浓硫酸催化并加热下乙醇和乙酸在浓硫酸催化并加热下可以发生酯化反应生成乙酸乙酯和水,可以发生酯化反应生成乙酸乙酯和水,实验证明,其他的醇和羧酸也可以发生实验证明,其他的醇和羧酸

    47、也可以发生酯化反应生成酯和水。酯化反应生成酯和水。3 3、醇氧化反应、醇氧化反应-位断键位断键 R2COHR1H+O22生成醛或酮生成醛或酮+2H2 OC=OR1R22Cu 思考思考是不是所有的醇都能被氧化成是不是所有的醇都能被氧化成醛?醛?反应反应断键位置断键位置与金属钠反应与金属钠反应Cu或或Ag催化氧化催化氧化浓硫酸加热到浓硫酸加热到170浓硫酸加热到浓硫酸加热到140浓硫酸条件下与乙酸加浓硫酸条件下与乙酸加热热与与HX加热反应加热反应 、饱和一元醇通式:饱和一元醇通式:饱和一元醇定义:饱和一元醇定义:C Cn nH H2n+12n+1OHOH或或C Cn nH H2n+22n+2O O 醇分子中烃基为烷烃基醇分子中烃基为烷烃基 ,且醇中只有一个羟,且醇中只有一个羟基基 ,那么,这种醇就是饱和一元醇,如甲醇、乙,那么,这种醇就是饱和一元醇,如甲醇、乙醇等。醇等。

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:函数与方程PPT教学课件.ppt
    链接地址:https://www.163wenku.com/p-4371456.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库