数值分析10方程求根的迭代法课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《数值分析10方程求根的迭代法课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数值 分析 10 方程 求根 迭代法 课件
- 资源描述:
-
1、第四章 方程求根的迭代法高 云方程求根需要考虑的问题求求 f(x)=0 的根的根q 代数方程:代数方程:f(x)=a0+a1x+.+anxn超越方程:超越方程:f(x)含超越函数,如含超越函数,如 sin(x),ex,lnx 等等q 实根与复根实根与复根q 根的重数根的重数 f(x)=(x x*)m g(x)且且 g(x*)0,则则 x*为为 f(x)的的 m 重根重根q 有根区间:有根区间:a,b 上存在上存在 f(x)=0 的一个实根的一个实根在在有根的前提下求出方程的的前提下求出方程的近似根。研究研究 内容:内容:迭代法的基本思想0)(xf基基本本思思路路)(xx 同解同解迭代迭代公式公
2、式)(1kkxx 给定初值给定初值0 xnnxxxx110 序序列列*limxxnn 存在存在*)(xx 0)(*xf等价于等价于迭代迭代函数函数?转换是转换是否唯一否唯一的不动点的不动点为为)(*xx 几何几何意义意义 )(xyxy 转换例子(1)x=1(x)=x3-6x2+10 x-2;(2);32926()()xxxx(3);32326923129()xxxxxxxx(4);234692()xxxx 例:已知方程已知方程 x3-6x2+9x-2=0 在在 3,4 内有一根,考虑迭代内有一根,考虑迭代?哪种转换方法好哪种转换方法好几何含义xyy=xxyy=xx*x*y=g(x)y=g(x)
3、x0p0 x1p1 x0p0 x1p1 几何含义xyy=xxyy=xx*x*y=(x)y=(x)x0p0 x1p1x0p0 x1p1压缩映像定理定理定理设设 (x)Ca,b 且可导,若且可导,若(2)0 L 1,使得,使得|(x)|L 对对 x a,b 成立成立(1)a (x)b 对一切对一切 x a,b 都成立都成立则有则有(a)对任意对任意 x0 a,b,由,由 xk+1=(xk)产生的迭代序列产生的迭代序列 均收敛到均收敛到 (x)在在 a,b 中的唯一不动点中的唯一不动点 x*。0kkx(b)有如下的误差估计有如下的误差估计11|*|1kkkxxxxL10|*|1kkLxxxxL可用可
4、用|x k+1-xk|来控制收敛精度来控制收敛精度L 越小收敛越快越小收敛越快压缩映像定理证明(a)由压缩映像定理可知,不动点由压缩映像定理可知,不动点 x*存在且唯一。存在且唯一。111()(*)|()|*|*|*|kkkkxxxxxxxLx 2120|*|*|*|*|kkkkxxL xxLxxLxxlim|*|0kkxx压缩映像定理证明(b)1|*|*|kkxxL xx111|(*)(*)|*kkkkkkxxxxxxxxxx(1)*kL xx11*1kkkxxxxL1111|()()|()|kkkkkkkkxxxxxxL xx 又又11101*111kkkkkkLLxxxxxxxxLLL全
5、局收敛与局部收敛p 定理的条件保证了不动点迭代的定理的条件保证了不动点迭代的全局收敛性全局收敛性。即迭代的收敛性与初始点的选取无关。即迭代的收敛性与初始点的选取无关。p 这种在这种在 x*的邻域内具有的收敛性称为的邻域内具有的收敛性称为局部收敛性局部收敛性。定理中的条件定理中的条件|(x)|L 1 可以适当放宽可以适当放宽(2)(x)在在 x*的某个邻域内连续,且的某个邻域内连续,且|(x*)|1由由 (x)的连续性及的连续性及|(x*)|1 即可推出:即可推出:存在存在 x*的的某个某个 邻域邻域 N(x*)=x*-,x*+,使得对使得对 x N(x*)都有都有|(x)|L 1,则由则由 x
6、0 N(x*)开始开始的迭代都收敛。的迭代都收敛。迭代过程的收敛速度1|lim0|krkkeCe定义定义则称该迭代为则称该迭代为 r 阶收敛。(1)当当 r=1 时称为时称为线性收敛,此时,此时 C 1 时称为时称为超线性收敛。p 二分法线性收敛二分法线性收敛p 不动点迭代中,若不动点迭代中,若 (x*)0,则则11*()(*)()kkkkexxxxe取极限得取极限得1|lim|(*)|0|krkkexe(C为常数为常数)线性收敛线性收敛P阶收敛设迭代设迭代 xk+1=(xk),若,若 (p)(x)在在 x*的某邻域内连续,的某邻域内连续,则该迭代法具有则该迭代法具有 p 阶收敛的充要条件是阶
7、收敛的充要条件是定理定理(1)()(*)*,(*)(*)(*)0,(*)0ppxxxxxx()11lim(*)!pkrkkexep并且有并且有()1()()(*)(*)(*).(*)!ppkkkkkxxxxxxxxp证明:充分性充分性.根据泰勒展开有根据泰勒展开有()1()*(*)!ppkkkxxxxp()11lim(*)!pkrkkexep必要性的证明必要性必要性.设迭代设迭代 xk+1=(xk)是是 p 阶收敛。阶收敛。迭代两边取极限迭代两边取极限,由,由 (x)的连续性可知的连续性可知 x*=(x*)。设设 p0 是满足是满足00(1)()(*)(*)(*)0,(*)0 ppxxxx的最
8、小正整数。的最小正整数。由充分性的证明过程可知迭代由充分性的证明过程可知迭代 p0 阶收敛。阶收敛。00111kkppppkkkeeeee又又若若 p0 p,与迭代与迭代 p 阶收敛矛盾阶收敛矛盾p0=p迭代过程的加速p 设有不动点迭代:设有不动点迭代:1()kkxx 1*()(*)()(*)kkkxxxxxx 11()*()kkxxx 设:设:()()kx 11()*()kkkkxxxxx 11()()()kkkkkxxxxx 缺点缺点:每次迭代需计算每次迭代需计算()kx 埃特金算法1*()(*)kkkxxxx 设:设:1()()kk 12*kkkkxxxxxxxx Aitken 加速加速
展开阅读全文