复变函数-第7讲课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《复变函数-第7讲课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 函数 讲课
- 资源描述:
-
1、一、复数列的极限二、级数的概念第一节第一节 复数项级数复数项级数三、典型例题2一、复数列的极限一、复数列的极限1.1.定义定义 ,0 数数相应地都能找到一个正相应地都能找到一个正如果任意给定如果任意给定 ,),(时成立时成立在在使使NnNn ,时的极限时的极限当当称为复数列称为复数列那末那末 nn 记作记作.lim nn .收敛于收敛于此时也称复数列此时也称复数列n ,),2,1(其中其中为一复数列为一复数列设设 nn,nnniba ,为为一一确确定定的的复复数数又又设设iba 32.复数列收敛的条件复数列收敛的条件 ),2,1(的充要条件是的充要条件是收敛于收敛于复数列复数列 nn.lim,
2、limbbaannnn ,lim nn如果如果那末对于任意给定的那末对于任意给定的0 就能找到一个正数就能找到一个正数N,时时当当Nn ,)()(ibaibann证证4,)()(bbiaaaannn从而有从而有.limaann 所以所以.limbbnn 同理同理.2,2 bbaann反之反之,如果如果,lim,limbbaannnn ,时时那末当那末当Nn 5从而有从而有)()(ibaibannn )()(bbiaann 定理一说明定理一说明:可将复数列的敛散性转化为判别两可将复数列的敛散性转化为判别两个实数列的敛散性个实数列的敛散性.lim nn所以所以证毕证毕,bbaann6课堂练习课堂练
3、习:下列数列是否收敛下列数列是否收敛?如果收敛如果收敛,求出其极限求出其极限.;11)1(ninizn ;1)1()2(niznn.1)3(2innenz 7二、级数的概念二、级数的概念1.1.定义定义,),2,1(为为一一复复数数列列设设 nbannn nnn 211表达式表达式称为复数项无穷级数称为复数项无穷级数.其最前面其最前面 n 项的和项的和nns 21称为级数的部分和称为级数的部分和.部分和部分和8收敛与发散收敛与发散,收敛收敛如果部分和数列如果部分和数列ns,1收敛收敛那末级数那末级数 nn.lim称称为为级级数数的的和和并并且且极极限限ssnn 说明说明:.lim ssnn 利
4、用极限利用极限 与实数项级数相同与实数项级数相同,判别复数项级数敛散判别复数项级数敛散性的基本方法是性的基本方法是:,不收敛不收敛如果部分和数列如果部分和数列ns .1发散发散那末级数那末级数 nn 9:,0 nnz级数级数例如例如1-21nnzzzs ,1时时由于当由于当 z,)1(11 zzznzzsnnnn 11limlim,11z .1时级数收敛时级数收敛所以当所以当 z102.复数项级数收敛的条件复数项级数收敛的条件证证因为因为nns 21)()(2121nnbbbiaaa ,nni )(11收收敛敛的的充充要要条条件件级级数数 nnnnniba .11都收敛都收敛和和 nnnnba
5、定理二定理二11 .11 nnnnba都收敛都收敛和和级数级数于是于是 :极限存在的充要条件极限存在的充要条件根据根据ns ,的极限存在的极限存在和和nn 说明说明 复数项级数的审敛问题复数项级数的审敛问题 实数项级数的审敛问题实数项级数的审敛问题(定理二定理二)12 )1(1 1是否收敛?是否收敛?级数级数 nnin解解;1 11发散发散因为因为 nnnna .1121收敛收敛 nnnnb所以原级数发散所以原级数发散.课堂练习课堂练习13 11nnnnba收收敛敛的的必必要要条条件件是是和和因因为为实实数数项项级级数数.0lim0lim nnnnba和和0lim nn 必要条件必要条件重要结
6、论重要结论:.0lim1发散发散级数级数 nnnn 收敛的必要条件是收敛的必要条件是所以复数项级数所以复数项级数 1nn 14:,1 nine级数级数例如例如,0limlim innnne 因为因为不满足必要条件不满足必要条件,所以原级数发散所以原级数发散.启示启示:判别级数的敛散性时判别级数的敛散性时,可先考察可先考察0lim nn?,0limnn 如果如果级数发散级数发散;应进一步判断应进一步判断.,0lim nn 153.绝对收敛与条件收敛绝对收敛与条件收敛 .,11也收敛也收敛那末那末收敛收敛如果如果 nnnn .11成立成立且不等式且不等式 nnnn 注意注意 ,1的的各各项项都都是
7、是非非负负的的实实数数 nn 应用正项级数的审敛法则判定应用正项级数的审敛法则判定.定理三定理三16证证由于由于,1221 nnnnnba 而而,2222nnnnnnbabbaa 根据实数项级数的比较准则根据实数项级数的比较准则,知知 ,11都收敛都收敛及及 nnnnba .11也都收敛也都收敛及及故故 nnnnba17由定理二可得由定理二可得.1是收敛的是收敛的 nn,11 nkknkk 又由又由 nkknnkkn11limlim 可知可知证毕证毕.11 kkkk 或或18非绝对收敛的收敛级数称为非绝对收敛的收敛级数称为条件收敛级数条件收敛级数.说明说明,22nnnnbaba 由由,1112
8、2 nkknkknkkkbaba知知如果如果 收敛收敛,那末称级数那末称级数 为为绝对收敛绝对收敛.1nn 1nn 定义定义19.111绝对收敛绝对收敛与与绝对收敛绝对收敛 nnnnnnba,11绝对收敛时绝对收敛时与与 nnnnba所以所以.1绝对收敛绝对收敛也也 nn 综上综上:201(1)(1)innen因为下列数列是否收敛下列数列是否收敛,如果收敛如果收敛,求出其极限求出其极限.1(1)(1);innen.sin)11(nnbn ,cos)11(nnan 所以所以而而0lim,1lim nnnnba解解 三、典型例题三、典型例题例例1 1),sin)(cos11(ninn .cos)2
9、(innn 21)2(解解 innncos 由于由于,时时当当 n所以数列发散所以数列发散.,)11(收敛收敛所以数列所以数列nienn .1lim nn 且且,coshnn,n 22例例2 2 是否收敛否 ni1 级数1n12n解解 级数满足必要条件级数满足必要条件,01lim12 ninn即即但但 1112)1(11nnnnnini)31211()31211(i,1 1发散发散级数级数因为因为 nn.原原级级数数仍仍发发散散,1)1(1收敛收敛虽虽 nnn 11nn 11)1(nnni23 !)8(1是否绝对收敛?是否绝对收敛?级数级数 nnni例例3 3,!81收敛收敛 nnn故原级数收
10、敛故原级数收敛,且为绝对收敛且为绝对收敛.,!8!)8(nninn 因为因为所以由正项级数的比值判别法知所以由正项级数的比值判别法知:解解24 ;)1(1收敛收敛因为因为 nnn,211收收敛敛也也 nn故原级数收敛故原级数收敛.,)1(1收收敛敛为为条条件件但但 nnn所以原级数非绝对收敛所以原级数非绝对收敛.21)1(1是否绝对收敛?是否绝对收敛?级数级数 nnnin例例4 4解解第二节第二节 幂级数幂级数一、幂级数的概念二、幂级数的敛散性三、幂级数的运算和性质四、典型例题26一、幂级数的概念一、幂级数的概念1.1.复变函数项级数复变函数项级数定义定义 ,),2,1()(为一复变函数序列为
11、一复变函数序列设设 nzfn )()()()(211zfzfzfzfnnn其中各项在区域其中各项在区域 D内有定义内有定义.表达式表达式称为复变函数项级数称为复变函数项级数,记作记作.)(1 nnzf27)()()()(21zfzfzfzsnn 称为这级数的称为这级数的部分和部分和.级数最前面级数最前面n项的和项的和和函数和函数.)(,)(,)()(lim ,001000它的和它的和称为称为收敛收敛在在那末称级数那末称级数存在存在极限极限内的某一点内的某一点如果对于如果对于zszzfzszszDnnnn 28 )()()()(21zfzfzfzsn称为该级数在区域称为该级数在区域D上的上的和函
12、数和函数.如果级数在如果级数在D内处处收敛内处处收敛,那末它的和一定那末它的和一定 :)(zsz的一个函数的一个函数是是292.2.幂级数幂级数当当11)()(nnnazczf或或,)(11时时 nnnzczf函数项级数的特殊情形函数项级数的特殊情形 22100)()()(azcazccazcnnn nnazc)(.zczczcczcnnnnn 22101或或这种级数称为这种级数称为幂级数幂级数.30二、幂级数的敛散性二、幂级数的敛散性1.收敛定理收敛定理(阿贝尔阿贝尔Abel定理定理)如果级数如果级数 0nnnzc)0(0 zz0zz 0zz 0zz ,z在在收敛收敛,z那末对那末对的的级数
13、必绝对收敛级数必绝对收敛,如果如果在在级数发散级数发散,那末对满足那末对满足的的级数必发散级数必发散.满足满足31证证 ,00收敛收敛因为级数因为级数 nnnzc由收敛的必要条件由收敛的必要条件,有有0lim0 nnnzc因而存在正数因而存在正数M,0Mzcnn 有有使对所有的使对所有的n,0zz 如果如果 ,1 0 qzz那末那末32而而nnnnnnzzzczc00 由正项级数的比较判别法知由正项级数的比较判别法知:.0是绝对收敛的是绝对收敛的故级数故级数 nnnzc nnnnnzczczcczc22100收敛收敛.另一部分的证明请课后完成另一部分的证明请课后完成.nMq 证毕证毕332.收
14、敛圆与收敛半径收敛圆与收敛半径对于一个幂级数对于一个幂级数,其收敛半径的情况有三种其收敛半径的情况有三种:(1)对所有的正实数都收敛对所有的正实数都收敛.由阿贝尔定理知由阿贝尔定理知:级数在复平面内处处绝对收敛级数在复平面内处处绝对收敛.34例如例如,级数级数 nnnzzz2221对任意固定的对任意固定的z,从某个从某个n开始开始,总有总有,21 nz于是有于是有,21nnnnz 故该级数对任意的故该级数对任意的z均收敛均收敛.35(2)对所有的正实数除对所有的正实数除 z=0 外都发散外都发散.此时此时,级数在复平面内除原点外处处发散级数在复平面内除原点外处处发散.(3)既存在使级数发散的正
15、实数既存在使级数发散的正实数,也存在使级数收也存在使级数收敛的正实数敛的正实数.例如例如,级数级数 nnznzz2221,0 时时当当 z通项不趋于零通项不趋于零,;,级数收敛级数收敛时时设设 z.,级数发散级数发散时时 z如图如图:故级数发散故级数发散.36xyo.R收敛圆收敛圆收敛半径收敛半径幂级数幂级数 0nnnzc的收敛范围是以原点为中心的圆域的收敛范围是以原点为中心的圆域.37答案答案:.为中心的圆域为中心的圆域是以是以az 幂级数幂级数 0)(nnnazc的收敛范围是何区域的收敛范围是何区域?问题问题1:在收敛圆周上是收敛还是发散在收敛圆周上是收敛还是发散,不能作出不能作出一般的结
16、论一般的结论,要对具体级数进行具体分析要对具体级数进行具体分析.注意注意问题问题2:幂级数在收敛圆周上的敛散性如何幂级数在收敛圆周上的敛散性如何?38例如例如,级数级数:0200nnnnnnnznzz1,1 zR收敛圆周收敛圆周均为均为收敛圆周上无收敛点收敛圆周上无收敛点;,1在其它点都收敛在其它点都收敛发散发散在点在点 z在收敛圆周上处处收敛在收敛圆周上处处收敛.393.收敛半径的求法收敛半径的求法方法方法1 1:比值法比值法(定理二定理二):,0lim 1 nnncc如果如果那末收敛半径那末收敛半径.1 R证证由于由于zcczczcnnnnnnnn111limlim ,1 时时当当 z 0
17、nnnzc收敛收敛.,z 40,0收敛收敛使级数使级数 nnnzc ,01zz 使使据阿贝尔定理据阿贝尔定理,.01必收敛必收敛级数级数 nnnzc根据上节定理三根据上节定理三,0 nnnzc级数级数,1 内收敛内收敛在圆在圆 z,1 0zz外有一点外有一点假设在圆假设在圆 ,1 1zz外再取一点外再取一点在圆在圆 41,1 1时时然而当然而当 z11111limzzczcnnnnn ,01收敛相矛盾收敛相矛盾与与 nnnzc,1 0外发散外发散在圆在圆故故 zzcnnn所以收敛半径为所以收敛半径为.1 R证毕证毕.1 即假设不成立即假设不成立.42如果如果:,0在复平面内处处收敛在复平面内处
展开阅读全文