高中数学 函数的单调性课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高中数学 函数的单调性课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 函数的单调性课件 函数 调性 课件 下载 _其他_数学_高中
- 资源描述:
-
1、 教学目的:(1)了解单调函数、单调区间的概念:能说出单调函数、单调区间这两个概念的大致意思。(2)理解函数单调性的概念:能用自已的语言表述概念;并能根据函数的图象指出单调性、写出单调区间。(3)掌握运用函数的单调性定义解决一类具体问题:能运用函数的单调性定义证明简单函数的单调性。教学重点:函数的单调性的概念;教学难点:利用函数单调性的定义证明具体函数的单调性。授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪教材分析:函数的单调性是函数众多性质中的重要性质之一,函数的单调性一节中的知识是今后研究具体函数的单调性理论基础;在解决函数值域、定义域、不等式、比较两数大小等具体问题中均需
2、用到函数的单调性;在历年的高考中对函数的单调性考查每年都有涉及;同时在这一节中利用函数图象来研究函数性质的数形结合思想将贯穿于我们整个高中数学教学 。在本节课中的教学中以函数的单调性的概念为线,它始终贯穿于整个课堂教学过程;利用函数的单调性的定义证明具体函数的单调性是对函数单调性概念的深层理解,且在“作差、变形、定号”过程学生不易掌握,按现行新教材结构体系,学生只学过一次函数、反比例函数、正比例函数、二次函数,所以对函数的单调性研究也只能限于这几种函数 学生的现有认知结构中能根据函数的图象观察出“随着自变量的增大函数值增大”等变化趋势,所以在教学中要充分利用好函数图象的直观性、发挥好多媒体教学
3、的优势;由于学生在概念的掌握上缺少系统性、严谨性,在教学中须加强 根据以上分析本节课教学方法以在多媒体辅助下的启发式教学为主;同时,本节课在教学过程中对教材中的函数 的图象进行了删除,教学中始终以一次函数,二次函数等函数为例子进行讨论研究。数与形数与形,本是相倚依本是相倚依焉能分作两边飞焉能分作两边飞数无形时少直觉数无形时少直觉形少数时难入微形少数时难入微数形结合百般好数形结合百般好隔离分家万事休隔离分家万事休切莫忘切莫忘,几何代数统一体几何代数统一体永远联系莫分离永远联系莫分离 华罗庚华罗庚引例引例1 1:图示是某市一天图示是某市一天24小时内的气温变化图。气温小时内的气温变化图。气温是是关
4、于时间关于时间 t 的函数,记为的函数,记为 f(t),观察这个气温变化图,观察这个气温变化图,说明气温在哪些时间段内是逐渐升高的或下降的?说明气温在哪些时间段内是逐渐升高的或下降的?引例引例2 2:画出下列函数的图象:画出下列函数的图象(1)y=xxyy=xO11引例引例2 2:画出下列函数的图象:画出下列函数的图象(1)y=xxyy=xO11引例引例2 2:画出下列函数的图象:画出下列函数的图象(1)y=x 此函数在区间此函数在区间 内内y随随x的增大而增的增大而增大,在区间大,在区间 y随随x的增大而减小;的增大而减小;xyy=xO11引例引例2 2:画出下列函数的图象:画出下列函数的图
5、象(1)y=x 此函数在区间此函数在区间 内内y随随x的增大而增的增大而增大,在区间大,在区间 y随随x的增大而减小;的增大而减小;x1f(x1)xyy=xO11引例引例2 2:画出下列函数的图象:画出下列函数的图象(1)y=x 此函数在区间此函数在区间 内内y随随x的增大而增的增大而增大,在区间大,在区间 y随随x的增大而减小;的增大而减小;x1f(x1)xyy=xO11引例引例2 2:画出下列函数的图象:画出下列函数的图象(1)y=x 此函数在区间此函数在区间 内内y随随x的增大而增的增大而增大,在区间大,在区间 y随随x的增大而减小;的增大而减小;x1f(x1)xyy=xO11引例引例2
6、 2:画出下列函数的图象:画出下列函数的图象(1)y=x 此函数在区间此函数在区间 内内y随随x的增大而增的增大而增大,在区间大,在区间 y随随x的增大而减小;的增大而减小;x1f(x1)xyy=xO11引例引例2 2:画出下列函数的图象:画出下列函数的图象(1)y=x 此函数在区间此函数在区间 内内y随随x的增大而增的增大而增大,在区间大,在区间 y随随x的增大而减小;的增大而减小;x1f(x1)(-,+)(2)y=x2引例引例2 2:画出下列函数的图象:画出下列函数的图象Oxyy=x2(2)y=x2引例引例2 2:画出下列函数的图象:画出下列函数的图象11Oxyy=x2(2)y=x2引例引
7、例2 2:画出下列函数的图象:画出下列函数的图象11 此函数在区间此函数在区间 内内y随随x的增大而增的增大而增大,在区间大,在区间 内内y随随x的增大而减小。的增大而减小。Oxyy=x2(2)y=x2引例引例2 2:画出下列函数的图象:画出下列函数的图象11 此函数在区间此函数在区间 内内y随随x的增大而增的增大而增大,在区间大,在区间 内内y随随x的增大而减小。的增大而减小。x1f(x1)Oxyy=x2(2)y=x2引例引例2 2:画出下列函数的图象:画出下列函数的图象11 此函数在区间此函数在区间 内内y随随x的增大而增的增大而增大,在区间大,在区间 内内y随随x的增大而减小。的增大而减
8、小。f(x1)x1Oxyy=x2(2)y=x2引例引例2 2:画出下列函数的图象:画出下列函数的图象11 此函数在区间此函数在区间 内内y随随x的增大而增的增大而增大,在区间大,在区间 内内y随随x的增大而减小。的增大而减小。f(x1)x1Oxyy=x2(2)y=x2引例引例2 2:画出下列函数的图象:画出下列函数的图象11 此函数在区间此函数在区间 内内y随随x的增大而增的增大而增大,在区间大,在区间 内内y随随x的增大而减小。的增大而减小。f(x1)x1Oxyy=x2(2)y=x2引例引例2 2:画出下列函数的图象:画出下列函数的图象11 此函数在区间此函数在区间 内内y随随x的增大而增的
9、增大而增大,在区间大,在区间 内内y随随x的增大而减小。的增大而减小。f(x1)x1Oxyy=x2(2)y=x2引例引例2 2:画出下列函数的图象:画出下列函数的图象11 此函数在区间此函数在区间 内内y随随x的增大而增的增大而增大,在区间大,在区间 内内y随随x的增大而减小。的增大而减小。f(x1)x1Oxyy=x2(2)y=x2引例引例2 2:画出下列函数的图象:画出下列函数的图象11 此函数在区间此函数在区间 内内y随随x的增大而增的增大而增大,在区间大,在区间 内内y随随x的增大而减小。的增大而减小。f(x1)x1(-,0 0 0,+)0yx1x2f(x2)f(x1)0yx1x2f(x
10、2)f(x1)xx 在区间在区间I内内在区间在区间I内内图图象象 y=f(x)y=f(x)图象图象特征特征数量数量特征特征0yx1x2f(x2)f(x1)0yx1x2f(x2)f(x1)xx 在区间在区间I内内在区间在区间I内内图图象象 y=f(x)y=f(x)图象图象特征特征从左至右,图象上升从左至右,图象上升数量数量特征特征0yx1x2f(x2)f(x1)0yx1x2f(x2)f(x1)xx 在区间在区间I内内在区间在区间I内内图图象象 y=f(x)y=f(x)图象图象特征特征从左至右,图象上升从左至右,图象上升数量数量特征特征y随随x的增大而增大的增大而增大0yx1x2f(x2)f(x1
展开阅读全文