书签 分享 收藏 举报 版权申诉 / 26
上传文档赚钱

类型高一数学课件 二次函数在闭区间上的最值.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:4367992
  • 上传时间:2022-12-03
  • 格式:PPT
  • 页数:26
  • 大小:1.60MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《高一数学课件 二次函数在闭区间上的最值.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    高一数学课件 二次函数在闭区间上的最值 数学 课件 二次 函数 区间 下载 _其他_数学_高中
    资源描述:

    1、 二次函数在闭区间上的最值二次函数在闭区间上的最值石家庄市石家庄市42中学中学于祝于祝 高中数学高中数学例例1、已知函数、已知函数f(x)=x22x 3.(1)若)若x 2,0,求函数求函数f(x)的最值;的最值;10 xy2 3例例1、已知函数、已知函数f(x)=x2 2x 3.(1)若)若x 2,0,求函数,求函数f(x)的最值;的最值;10 xy2 34 1(2)若)若x 2,4,求函数,求函数f(x)的最值;的最值;例例1 1、已知函数、已知函数f(x)=xf(x)=x2 2 2x 2x 3.3.(1 1)若)若xx 2 2,00,求函数,求函数f(x)f(x)的最值;的最值;(2 2

    2、)若)若xx 2 2,44,求函数,求函数f(x)f(x)的最值;的最值;y10 x2 34 1 2125(3)若)若x ,求求 函数函数f(x)的最值;的最值;25,21例例1 1、已知函数、已知函数f(x)=xf(x)=x2 2 2x 2x 3 3(1 1)若)若xx 2 2,00,求函数,求函数f(x)f(x)的最值;的最值;(2 2)若)若xx 2 2,4 4,求函数,求函数f(x)f(x)的最值;的最值;(3 3)若)若xx ,求函数,求函数f(x)f(x)的最值;的最值;25,2110 xy2 34 1 232123,21(4 4)若)若xx ,求函数求函数f(x)f(x)的最值的

    3、最值;10 xy2 34 1(5 5)若)若 xxtt,t+2t+2时,时,求函数求函数f(x)f(x)的最值的最值.tt+2例例1 1、已知函数、已知函数f(x)=xf(x)=x2 2 2x 2x 3.3.(1 1)若)若xx 2 2,00,求函数求函数f(x)f(x)的最值;的最值;(2 2)若)若xx 2 2,44,求函数,求函数f(x)f(x)的最值;的最值;(3 3)若)若xx ,求函数,求函数f(x)f(x)的最值;的最值;(4 4)若)若xx ,求,求 函数函数f(x)f(x)的最值;的最值;25,2123,2110 xy2 34 1 tt+2例例1 1、已知函数、已知函数f(x

    4、)=xf(x)=x2 2 2x 2x 3.3.(1 1)若)若xx 2 2,00,求函数求函数f(x)f(x)的最值;的最值;(2 2)若)若xx 2 2,44,求函数,求函数f(x)f(x)的最值;的最值;(3 3)若)若xx ,求函数,求函数f(x)f(x)的最值;的最值;(4 4)若)若xx ,求,求 函数函数f(x)f(x)的最值;的最值;(5 5)若)若xxtt,t+2t+2时,时,求函数求函数f(x)f(x)的最值的最值.25,2123,2110 xy2 34 1 tt+2例例1 1、已知函数、已知函数f(x)=xf(x)=x2 2 2x 2x 3.3.(1 1)若)若xx 2 2

    5、,00,求函数求函数f(x)f(x)的最值;的最值;(2 2)若)若xx 2 2,44,求函数,求函数f(x)f(x)的最值;的最值;(3 3)若)若xx ,求函数,求函数f(x)f(x)的最值;的最值;(4 4)若)若xx ,求,求 函数函数f(x)f(x)的最值;的最值;(5 5)若)若xxtt,t+2t+2时,时,求函数求函数f(x)f(x)的最值的最值.25,2123,2110 xy2 34 1 tt+2例例1 1、已知函数、已知函数f(x)=xf(x)=x2 2 2x 2x 3.3.(1 1)若)若xx 2 2,00,求函数求函数f(x)f(x)的最值;的最值;(2 2)若)若xx

    6、2 2,44,求函数,求函数f(x)f(x)的最值;的最值;(3 3)若)若xx ,求函数,求函数f(x)f(x)的最值;的最值;(4 4)若)若xx ,求,求 函数函数f(x)f(x)的最值;的最值;(5 5)若)若xxtt,t+2t+2时,时,求函数求函数f(x)f(x)的最值的最值.25,2123,2110 xy2 34 1 tt+2例例1 1、已知函数、已知函数f(x)=xf(x)=x2 2 2x 2x 3.3.(1 1)若)若xx 2 2,00,求函数求函数f(x)f(x)的最值;的最值;(2 2)若)若xx 2 2,44,求函数,求函数f(x)f(x)的最值;的最值;(3 3)若)

    7、若xx ,求函数,求函数f(x)f(x)的最值;的最值;(4 4)若)若xx ,求,求 函数函数f(x)f(x)的最值;的最值;(5 5)若)若xxtt,t+2t+2时,时,求函数求函数f(x)f(x)的最值的最值.25,2123,21评注评注:例例1 1属于属于“轴轴定区间变定区间变”的问题,的问题,看作动区间沿看作动区间沿x x轴移轴移动的过程中,函数最动的过程中,函数最值的变化,即动区间值的变化,即动区间在定轴的左、右两侧在定轴的左、右两侧及包含定轴的变化,及包含定轴的变化,要注意开口方向及端要注意开口方向及端点情况。点情况。10 xy2 3 34 1 tt+2例例2 2、求函数、求函数

    8、f(x)=axf(x)=ax2 22a2a2 2x+1(a0)x+1(a0)在区间在区间 1 1,22上的最值上的最值.10 xy2 1 例例2 2、求函数、求函数f(x)=axf(x)=ax2 22a2a2 2x+1(a0)x+1(a0)在区间在区间 1 1,22上的最值上的最值.10 xy2 1 例例2 2、求函数、求函数f(x)=axf(x)=ax2 22a2a2 2x+1(a0)x+1(a0)在区间在区间 1 1,22上的最值上的最值.10 xy2 1 例例2 2、求函数、求函数f(x)=axf(x)=ax2 22a2a2 2x+1(a0)x+1(a0)在区间在区间 1 1,22上的最

    9、值上的最值.10 xy2 1 10 xy2 1 10 xy2 1 例例2 2、求函数、求函数f(x)=axf(x)=ax2 22a2a2 2x+1(a0)x+1(a0)在区间在区间 1 1,22上的最值上的最值.10 xy2 1 10 xy2 1 例例2 2、求函数、求函数f(x)=axf(x)=ax2 22a2a2 2x+1(a0)x+1(a0)在区间在区间 1 1,22上的最值上的最值.评注评注:例例2 2属于属于“轴变区间定轴变区间定”的问题,看作的问题,看作对称轴沿对称轴沿x x轴移动的过程中轴移动的过程中,函数最值的变化函数最值的变化,即对称轴在定区间的左、右两侧及对称轴在定即对称轴

    10、在定区间的左、右两侧及对称轴在定区间上变化情况区间上变化情况,要注意开口方向及端点情况。要注意开口方向及端点情况。10 xy2 1 10 xy2 1 例例3 3、已知函数、已知函数f(x)=xf(x)=x2 2+ax+b+ax+b,x0,1x0,1,试确定试确定a a、b,b,使使f(x)f(x)的值域是的值域是0,1.0,1.10 xy2 1 例例3 3、已知函数、已知函数f(x)=xf(x)=x2 2+ax+b+ax+b,x0,1x0,1,试确定试确定a a、b,b,使使f(x)f(x)的值域是的值域是0,1.0,1.10 xy2 1 例例3 3、已知函数、已知函数f(x)=xf(x)=x

    11、2 2+ax+b+ax+b,x0,1x0,1,试确定试确定a a、b,b,使使f(x)f(x)的值域是的值域是0,1.0,1.10 xy2 1 例例3 3、已知函数、已知函数f(x)=xf(x)=x2 2+ax+b+ax+b,x0,1x0,1,试确定试确定a a、b,b,使使f(x)f(x)的值域是的值域是0,1.0,1.10 xy2 1 例例3 3、已知函数、已知函数f(x)=xf(x)=x2 2+ax+b+ax+b,x0,1x0,1,试确定试确定a a、b,b,使使f(x)f(x)的值域是的值域是0,1.0,1.10 xy2 1 总结总结:求二次函数:求二次函数f(x)=axf(x)=ax2 2+bx+c+bx+c在在mm,nn上上 的最值或值域的一般方法是:的最值或值域的一般方法是:(2 2)当)当x x0 0mm,nn时,时,f(m)f(m)、f(n)f(n)、f(xf(x0 0)中的较大者是最大值中的较大者是最大值,较小者是最小值;较小者是最小值;(1)检查)检查x0=是否属于是否属于 m,n;ab2(3 3)当)当x x0 0 m m,nn时,时,f(m)f(m)、f(n)f(n)中的较大中的较大 者是最大值,较小者是最小值者是最大值,较小者是最小值.

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:高一数学课件 二次函数在闭区间上的最值.ppt
    链接地址:https://www.163wenku.com/p-4367992.html
    晟晟文业
         内容提供者      个人认证 实名认证

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库