高中数学选修2-3课件:1-2-1排列(二).ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高中数学选修2-3课件:1-2-1排列(二).ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 选修 课件 排列 下载 _其他_数学_高中
- 资源描述:
-
1、 从从n n个不同元素中,任取个不同元素中,任取m()m()个元素(个元素(m m个元素不可重复取)个元素不可重复取)按照一定的顺序排成一列按照一定的顺序排成一列,叫做叫做从从n n个不同元素中取出个不同元素中取出m m个个元素的一个排列元素的一个排列.nm 1 1、排列的定义:、排列的定义:2.2.排列数的定义:排列数的定义:从从n n个不同元素中,任取个不同元素中,任取m()m()个元素的个元素的所有排列的个数所有排列的个数叫做从叫做从n n个元素中取出个元素中取出m m个元个元素的排列数素的排列数n nm m mnA3.3.全排列的定义:全排列的定义:n n个不同元素个不同元素全部取出全
2、部取出的一个排列,叫做的一个排列,叫做 n n个不个不同元素的一个全排列同元素的一个全排列.(3)(3)全排列数公式:全排列数公式:n n1 1)(n n3 32 21 1!nAnn4.4.有关公式:有关公式:.阶阶乘乘:n n!1 1(2)排列数公式)排列数公式:n n)m mN N*,(m m、n nm m)!(n nn n!1 1)m m(n n1 1)(n nn nA Am mn n 325454AA1 1计算:(计算:(1 1)12344444AAAA(2 2)课堂练习课堂练习2从从4种蔬菜品种中选出种蔬菜品种中选出3种,分别种植在不同土质的种,分别种植在不同土质的3块土地块土地上进
3、行试验,有上进行试验,有种不同的种植方法?种不同的种植方法?4信号兵用信号兵用3种不同颜色的旗子各一面,每次打出种不同颜色的旗子各一面,每次打出3面,最多能面,最多能打出不同的信号有(打出不同的信号有()D.27 种 C.6 种 种 B.3 种1 .A3483443455452435AA348643从参加乒乓球团体比赛的从参加乒乓球团体比赛的5名运动员中选出名运动员中选出3名进行某名进行某场比赛,场比赛,并排定他们的出场顺序,有并排定他们的出场顺序,有种不同的方法?种不同的方法?64123423434444342414AAAA24602423434A6034535AC612333A例例1 1、
4、某年全国足球甲级、某年全国足球甲级A A组联赛共有组联赛共有1414个队参加,个队参加,每队要与其余各队在主、客场分别比赛一次,共每队要与其余各队在主、客场分别比赛一次,共进行多少场比赛?进行多少场比赛?解:解:14个队中任意两队进行个队中任意两队进行1次主场比赛与次主场比赛与1次客次客场比赛,对应于从场比赛,对应于从14个元素中任取个元素中任取2个元素的一个元素的一个排列,因此,个排列,因此,比赛的总场次是比赛的总场次是1821314214A例例2 2:(1)(1)有有5 5本不同的书,从中选本不同的书,从中选3 3本送给本送给3 3名同学,每名同学,每人各人各1 1本,共有多少种不同的送法
5、?本,共有多少种不同的送法?(2)(2)有有5 5种不同的书,买种不同的书,买3 3本送给本送给3 3名同学,每人各名同学,每人各1 1本,共有多少种不同的送法?本,共有多少种不同的送法?例例3 3:某信号兵用红,黄,蓝:某信号兵用红,黄,蓝3 3面旗从上到下挂在竖面旗从上到下挂在竖直的旗杆上表示信号,每次可以任挂直的旗杆上表示信号,每次可以任挂1 1面、面、2 2面或面或3 3面,并且不同的顺序表示不同的信号,一共可以表面,并且不同的顺序表示不同的信号,一共可以表示多少种不同的信号?示多少种不同的信号?例例4 4:用:用0 0到到9 9这这1010个数字,可以组成多少个没有重个数字,可以组成
展开阅读全文