书签 分享 收藏 举报 版权申诉 / 17
上传文档赚钱

类型高中数学北师大版选修2-2第1章《反证法-教学课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:4366991
  • 上传时间:2022-12-03
  • 格式:PPT
  • 页数:17
  • 大小:2.29MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《高中数学北师大版选修2-2第1章《反证法-教学课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    高中数学 北师大 选修 反证法 教学 课件 下载 _选修系列_北师大版_数学_高中
    资源描述:

    1、13 3 反证法反证法2一、教学目标:一、教学目标:结合已经学过的数学实例,了结合已经学过的数学实例,了解间接证明的一种基本方法解间接证明的一种基本方法反证法;了解反证反证法;了解反证法的思考过程与特点。法的思考过程与特点。二、教学重点:二、教学重点:了解反证法的思考过程与特点。了解反证法的思考过程与特点。教学难点:教学难点:正确理解、运用反证法。正确理解、运用反证法。三、教学方法:三、教学方法:探析归纳,讲练结合探析归纳,讲练结合四、教学过程四、教学过程3综合法特点综合法特点:复习复习由因导果由因导果由由已知已知结论结论分析法特点:分析法特点:执果索因执果索因即:即:由由结果结果找条件找条件

    2、倒推倒推4思考?思考?A A、B B、C C三个人,三个人,A A说说B B撒谎,撒谎,B B说说C C撒谎,撒谎,C C说说A A、B B都都撒谎。则撒谎。则C C必定是在撒谎,为什么?必定是在撒谎,为什么?假设假设C C没有撒谎没有撒谎,则则C C真真;由由A A假假,知知B B真真.那么假设那么假设“C C没有撒谎没有撒谎”不成立不成立;则则C C必定是在撒谎必定是在撒谎.那么那么A A假且假且B B假假;这与这与B B假矛盾假矛盾.推出矛盾推出矛盾.推翻假设推翻假设.原命题成立原命题成立.分析分析:由假设由假设5 反证法:反证法:假设原命题不成立,假设原命题不成立,经过正确的推理经过正

    3、确的推理,得出矛盾,得出矛盾,因此说明假设错误因此说明假设错误,从而证明原命题成立从而证明原命题成立,这样的的证明方法叫这样的的证明方法叫反证法反证法反证法的基本步骤:反证法的基本步骤:四步四步得出矛盾的方法:得出矛盾的方法:(1 1)与已知条件矛盾;)与已知条件矛盾;(2 2)与已有公理、定理、定义矛盾;)与已有公理、定理、定义矛盾;(3 3)自相矛盾。)自相矛盾。6应用反证法的情形:应用反证法的情形:(1)(1)直接证明比较困难直接证明比较困难;(2)(2)直接证明需分成很多类直接证明需分成很多类,而对立命题分类较少而对立命题分类较少;(3)3)结论有结论有“至少至少”,“,“至多至多”,

    4、“,“有无穷多个有无穷多个”之类字样之类字样(4 4)结论为)结论为“唯一唯一”之类的命题;之类的命题;7例例1、已知已知a a是整数,是整数,2 2能整除能整除a2,求证:,求证:2能整除能整除a.1)22(2144)12(2222mmmmma证明:假设命题的结论不成立,即证明:假设命题的结论不成立,即“2 2不不能整能整除除a a”。因为因为a a是整数,故是整数,故a a是奇数,是奇数,a a可表示为可表示为2m2m+1 1(m m为整数),则为整数),则即即a2是奇数。所以,是奇数。所以,2 2不不能整除能整除a2。这与。这与已知已知“2能整除能整除”相矛盾。于是,相矛盾。于是,“2

    5、2不不能整能整除除a a”这个假设错误,故这个假设错误,故2能整除能整除a.8例例2、在同一平面内,两条直线在同一平面内,两条直线a a,b b都和直线都和直线c c垂直。求证:垂直。求证:a a与与b b平行。平行。证明:证明:假设命题的结论不成立,即假设命题的结论不成立,即“直线直线a a与与b b相相交交”。设直线。设直线a a,b b的交点为的交点为M M,a a,c c的交点为的交点为P P,b b,c c的交点为的交点为Q Q,如图所示,则,如图所示,则PMQPMQ0 0MPQPQMMPQPMQ0001809090PMQ这样这样的内角和的内角和这与定理这与定理“三角形的内角和等于三

    6、角形的内角和等于180180”相矛盾,这说明假设是错误的。所以相矛盾,这说明假设是错误的。所以直直线线a a与与b b不相交,即不相交,即a a与与b b平行。平行。9解题反思:解题反思:证明以上题时,你是怎么想到反证法的?证明以上题时,你是怎么想到反证法的?反设时应注意什么?反设时应注意什么?反证法中归谬是核心步骤,本题中得到的逻反证法中归谬是核心步骤,本题中得到的逻辑矛盾归属哪一类?辑矛盾归属哪一类?10例3.已知四面体SABC中,SA底面ABC,ABC是锐角三角形,H是点A在面SBC上的射影求证:H不可能是SBC的垂心ABCHDS解题反思:证明该问题的关键是哪一步?本题中得到的逻辑矛盾归

    7、属哪一类?11例例4、已知已知a0,证:假设方程ax+b=0(a 0)至少存在两个根,证:假设方程ax+b=0(a 0)至少存在两个根,1 12 21 12 2不不妨妨设设其其中中的的两两根根分分别别为为x x,x x 且且x x x x1212则ax=b,ax=b则ax=b,ax=b1212ax=axax=ax1 12 2 a ax x-a ax x=0 01 12 2 a a(x x-x x)=0 012121212 x x,x-x 0 x x,x-x 0 a=0 a=0 与已知a 0矛盾,与已知a 0矛盾,故假设不成立,结论成立。故假设不成立,结论成立。证明:关于证明:关于x的方程的方程

    8、ax=b有且只有一个根。有且只有一个根。12 例例5 5、求证:求证:是无理数。是无理数。2 2证:假设 2是有理数,证:假设 2是有理数,m m则则存存在在互互质质的的整整数数m m,n n使使得得2 2=,n n m=2n m=2n2222 m=2n m=2n2 2m m 是是偶偶数数,从从而而m m必必是是偶偶数数,故故设设m m=2 2k k(k kN N)22222222从而有4k=2n,即n=2k从而有4k=2n,即n=2k2 2n 也是偶数,n 也是偶数,这与m,n互质矛盾!这与m,n互质矛盾!所以假设不成立,2是有理数成立。所以假设不成立,2是有理数成立。解题反思:解题反思:本

    9、题中得到的逻辑矛盾归属哪一类?本题中得到的逻辑矛盾归属哪一类?13练习:练习:课本课本14P练习练习1 1.归纳总结:归纳总结:1.1.哪些命题适宜用反证法加以证明?哪些命题适宜用反证法加以证明?笼统地说,笼统地说,正面证明繁琐或困难时宜用反证法;正面证明繁琐或困难时宜用反证法;具体地讲,具体地讲,当所证命题的结论为当所证命题的结论为否定形式否定形式或或 含有含有“至多至多”、“至少至少”等不确定词,等不确定词,此外,此外,“存在性存在性”、“唯一性唯一性”问题问题.142.2.归谬归谬是是“反证法反证法”的核心步骤,归谬得到的逻辑的核心步骤,归谬得到的逻辑矛盾,常见的类型有哪些?矛盾,常见的

    10、类型有哪些?归谬包括推出的结果与已知定义、公理、定理、归谬包括推出的结果与已知定义、公理、定理、公式矛盾,或与已知条件、临时假设矛盾,以及公式矛盾,或与已知条件、临时假设矛盾,以及自相矛盾等各种情形自相矛盾等各种情形.15作业:作业:课本课本15P习题习题1-31-3:(3 3)、()、(4 4)五、教后反思:五、教后反思:编后语 老师上课都有一定的思路,抓住老师的思路就能取得良好的学习效果。在上一小节中已经提及听课中要跟随老师的思路,这里再进一步论述听课时如何抓住老师的思路。根据课堂提问抓住老师的思路。老师在讲课过程中往往会提出一些问题,有的要求回答,有的则是自问自答。一般来说,老师在课堂上

    11、提出的问题都是学习中的关键,若能抓住老师提出的问题深入思考,就可以抓住老师的思路。根据自己预习时理解过的逻辑结构抓住老师的思路。老师讲课在多数情况下是根据教材本身的知识结构展开的,若把自己预习时所理解过的知识逻辑结构与老师的讲解过程进行比较,便可以抓住老师的思路。根据老师的提示抓住老师的思路。老师在教学中经常有一些提示用语,如“请注意”、“我再重复一遍”、“这个问题的关键是”等等,这些用语往往体现了老师的思路。来自:学习方法网 紧跟老师的推导过程抓住老师的思路。老师在课堂上讲解某一结论时,一般有一个推导过程,如数学问题的来龙去脉、物理概念的抽象归纳、语文课的分析等。感悟和理解推导过程是一个投入思维、感悟方法的过程,这有助于理解记忆结论,也有助于提高分析问题和运用知识的能力。搁置问题抓住老师的思路。碰到自己还没有完全理解老师所讲内容的时候,最好是做个记号,姑且先把这个问题放在一边,继续听老师讲后面的内容,以免顾此失彼。来自:学习方法网 利用笔记抓住老师的思路。记笔记不仅有利于理解和记忆,而且有利于抓住老师的思路。2022-12-3最新中小学教学课件162022-12-3最新中小学教学课件17谢谢欣赏!

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:高中数学北师大版选修2-2第1章《反证法-教学课件.ppt
    链接地址:https://www.163wenku.com/p-4366991.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库