高中数学北师大版选修2-2第1章《反证法-教学课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高中数学北师大版选修2-2第1章《反证法-教学课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 北师大 选修 反证法 教学 课件 下载 _选修系列_北师大版_数学_高中
- 资源描述:
-
1、13 3 反证法反证法2一、教学目标:一、教学目标:结合已经学过的数学实例,了结合已经学过的数学实例,了解间接证明的一种基本方法解间接证明的一种基本方法反证法;了解反证反证法;了解反证法的思考过程与特点。法的思考过程与特点。二、教学重点:二、教学重点:了解反证法的思考过程与特点。了解反证法的思考过程与特点。教学难点:教学难点:正确理解、运用反证法。正确理解、运用反证法。三、教学方法:三、教学方法:探析归纳,讲练结合探析归纳,讲练结合四、教学过程四、教学过程3综合法特点综合法特点:复习复习由因导果由因导果由由已知已知结论结论分析法特点:分析法特点:执果索因执果索因即:即:由由结果结果找条件找条件
2、倒推倒推4思考?思考?A A、B B、C C三个人,三个人,A A说说B B撒谎,撒谎,B B说说C C撒谎,撒谎,C C说说A A、B B都都撒谎。则撒谎。则C C必定是在撒谎,为什么?必定是在撒谎,为什么?假设假设C C没有撒谎没有撒谎,则则C C真真;由由A A假假,知知B B真真.那么假设那么假设“C C没有撒谎没有撒谎”不成立不成立;则则C C必定是在撒谎必定是在撒谎.那么那么A A假且假且B B假假;这与这与B B假矛盾假矛盾.推出矛盾推出矛盾.推翻假设推翻假设.原命题成立原命题成立.分析分析:由假设由假设5 反证法:反证法:假设原命题不成立,假设原命题不成立,经过正确的推理经过正
3、确的推理,得出矛盾,得出矛盾,因此说明假设错误因此说明假设错误,从而证明原命题成立从而证明原命题成立,这样的的证明方法叫这样的的证明方法叫反证法反证法反证法的基本步骤:反证法的基本步骤:四步四步得出矛盾的方法:得出矛盾的方法:(1 1)与已知条件矛盾;)与已知条件矛盾;(2 2)与已有公理、定理、定义矛盾;)与已有公理、定理、定义矛盾;(3 3)自相矛盾。)自相矛盾。6应用反证法的情形:应用反证法的情形:(1)(1)直接证明比较困难直接证明比较困难;(2)(2)直接证明需分成很多类直接证明需分成很多类,而对立命题分类较少而对立命题分类较少;(3)3)结论有结论有“至少至少”,“,“至多至多”,
4、“,“有无穷多个有无穷多个”之类字样之类字样(4 4)结论为)结论为“唯一唯一”之类的命题;之类的命题;7例例1、已知已知a a是整数,是整数,2 2能整除能整除a2,求证:,求证:2能整除能整除a.1)22(2144)12(2222mmmmma证明:假设命题的结论不成立,即证明:假设命题的结论不成立,即“2 2不不能整能整除除a a”。因为因为a a是整数,故是整数,故a a是奇数,是奇数,a a可表示为可表示为2m2m+1 1(m m为整数),则为整数),则即即a2是奇数。所以,是奇数。所以,2 2不不能整除能整除a2。这与。这与已知已知“2能整除能整除”相矛盾。于是,相矛盾。于是,“2
5、2不不能整能整除除a a”这个假设错误,故这个假设错误,故2能整除能整除a.8例例2、在同一平面内,两条直线在同一平面内,两条直线a a,b b都和直线都和直线c c垂直。求证:垂直。求证:a a与与b b平行。平行。证明:证明:假设命题的结论不成立,即假设命题的结论不成立,即“直线直线a a与与b b相相交交”。设直线。设直线a a,b b的交点为的交点为M M,a a,c c的交点为的交点为P P,b b,c c的交点为的交点为Q Q,如图所示,则,如图所示,则PMQPMQ0 0MPQPQMMPQPMQ0001809090PMQ这样这样的内角和的内角和这与定理这与定理“三角形的内角和等于三
展开阅读全文