空间向量基本定理-人教A版高中数学课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《空间向量基本定理-人教A版高中数学课件.pptx》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 空间 向量 基本 定理 人教 高中数学 课件 下载 _人教A版_数学_高中
- 资源描述:
-
1、空间向量基本定理激趣诱思知识点拨我们所在的教室是一个立体图形,即是一个三维立体图,如果以教室的一个墙角为坐标原点,沿着三条墙缝作射线可以得到三个空间向量.这三个空间向量是不共面的,那么这个三维立体图与这三个空间向量有什么关系呢?事实上可以建立一个空间坐标系来研究三维立体图形.激趣诱思知识点拨激趣诱思知识点拨名师点析1.空间任意三个不共面的向量都可构成空间的一个基底.基底选定后,空间的所有向量均可由基底唯一表示;不同基底下,同一向量的表达式也有可能不同.2.一个基底是一个向量组,一个基向量是指基底中的某一个向量,二者是相关联的不同概念.3.由于零向量与任意一个非零向量共线,与任意两个不共线的非零
2、向量共面,所以若三个向量不共面,就说明它们都不是零向量.激趣诱思知识点拨微练习在三棱柱ABC-A1B1C1中,可以作为空间向量一个基底的是()答案:C 激趣诱思知识点拨微判断判断下列说法是否正确,正确的在后面的括号内打“”,错误的打“”.(1)空间向量的基底是唯一的.()(2)若a,b,c是空间向量的一个基底,则a,b,c均为非零向量.()(3)已知A,B,M,N是空间四点,若 不能构成空间的一个基底,则A,B,M,N共面.()(4)若a,b,c是空间的一个基底,且存在实数x,y,z使得xa+yb+zc=0,则有x=y=z=0.()答案:(1)(2)(3)(4)探究一探究二探究三当堂检测基底的
3、判断基底的判断例1(1)设x=a+b,y=b+c,z=c+a,且a,b,c是空间的一个基底,给出下列向量组:a,b,x,x,y,z,b,c,z,x,y,a+b+c.其中可以作为空间一个基底的向量组有()A.1个B.2个C.3个D.4个探究一探究二探究三当堂检测(1)答案:C 探究一探究二探究三当堂检测反思感悟判断基底的基本思路及方法(1)基本思路:判断三个空间向量是否共面,若共面,则不能构成基底;若不共面,则能构成基底.(2)方法:如果向量中存在零向量,则不能作为基底;如果存在一个向量可以用另外的向量线性表示,则不能构成基底.假设a=b+c,运用空间向量基本定理,建立,的方程组,若有解,则共面
展开阅读全文