书签 分享 收藏 举报 版权申诉 / 140
上传文档赚钱

类型苏汝铿高等量子力学讲义(英文版)Chapter3-Relat汇总课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:4366284
  • 上传时间:2022-12-03
  • 格式:PPT
  • 页数:140
  • 大小:3.19MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《苏汝铿高等量子力学讲义(英文版)Chapter3-Relat汇总课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    苏汝铿 高等 量子力学 讲义 英文 Chapter3 Relat 汇总 课件
    资源描述:

    1、Chapter 3Relativistic Quantum MechanicsIntroductionNon-relativistic quantum mechanics relativistic quantum mechanicsSchrdinger equation Klein-Gordon equation S integerDirac equation S half integerSpin is automatically contained in Dirac equation3.1 Klein Gordon equationLorentz transormation time,spa

    2、ce are of the same weightK G equation3.1 Klein Gordon equation3.1 Klein Gordon equation3.1 Klein Gordon equation3.1 Klein Gordon equationDiscussionNegative energy instable3.1 Klein Gordon equationNegative probability22*22*2221()ctt 3.1 Klein Gordon equation3.1 Klein Gordon equationNon-relativistic l

    3、imit:K-G eq Sch eq3.1 Klein Gordon equation3.1 Klein Gordon equation22*2*()()2iimcimcmctt 3.1 Klein Gordon equationWith electromagnetic field3.1 Klein Gordon equation3.1 Klein Gordon equationCovariant form3.1 Klein Gordon equation3.1 Klein Gordon equation3.1 Klein Gordon equation3.2 Dirac equationHo

    4、w to overcome the negative probability difficulty3.2 Dirac equation3.2 Dirac equation3.2 Dirac equation3.2 Dirac equationThe condition for and 1)They must follow the relation2)Operator H must be Hermitian3)Lorentz invariance22224Ec pm c3.2 Dirac equation3.2 Dirac equation3.2 Dirac equation3.2 Dirac

    5、equation4 anti-commute matrices and 44 matrices3.2 Dirac equation3.2 Dirac equationConservation law of the probability flux3.2 Dirac equation321kkiii cmctx 321kkiii cmctx 321kkiii cmctx 3.2 Dirac equation31()()kkiii ctx ,kkjc 3.3 solutions of the free particle3.3 solutions of the free particle3.3 so

    6、lutions of the free particle3.3 solutions of the free particle3.3 solutions of the free particle3.3 solutions of the free particle3.3 solutions of the free particle3.3 solutions of the free particle3.3 solutions of the free particleDiscussionPositive energy state(=+1)Negative energy state(=-1)Eigens

    7、tates of momentum p2224,1pEc pm c 2224,1pEc pm c 3.3 solutions of the free particleOrbital angular momentum is not conserved3.3 solutions of the free particle1,()0 xxxxxyyzzxxxxyyzxzyzzyxdLL HdticLpppicLpLpLpicppcp()dLcpdt3.3 solutions of the free particleSpin angular momentum0(,)0iiiix y z 00 Or3.3

    8、 solutions of the free particle,0,0ii,2,2,2xyzxzxzxyiii3.3 solutions of the free particle,2()2()xxxyyzzzyyzxHcpcppicppicp ,()2Hi cp 3.3 solutions of the free particle3.3 solutions of the free particleHelicity operator3.3 solutions of the free particle3.3 solutions of the free particleIf ,we find0,0,

    9、ppEigenvalues:/23.3 solutions of the free particleEigenstates:3.3 solutions of the free particle3.3 solutions of the free particleDirac hole theory Dirac seaHole:(+Ep0,+m0,+e0)(positron)1932,Anderson discovered positron from cosmic ray using cloud chamber3.4 Dirac equation in the central force field

    10、Equation in non-relativistic limit3.4 Dirac equation in the central force field3.4 Dirac equation in the central force field22cpmcEV 3.4 Dirac equation in the central force fieldIn non-relativistic approximation22EVmc22cpxmcEV 3.4 Dirac equation in the central force field21122EVpmcmc 22221()()()()24

    11、1()()4Eppppmm cp VpVEm c 3.4 Dirac equation in the central force field3.4 Dirac equation in the central force field3.4 Dirac equation in the central force fieldNoting:up to the orderNormalization condition must be ensured3.4 Dirac equation in the central force field3.4 Dirac equation in the central

    12、force field2222222(1)(1)88spm cm c3.4 Dirac equation in the central force field222222222222(1)81()()(1)2448sspEm cpE ppVp Vpmm cm cm c 3.4 Dirac equation in the central force field3.4 Dirac equation in the central force fieldBy using3.4 Dirac equation in the central force fieldRelativistic correctio

    13、n of kinetic energy3.4 Dirac equation in the central force fieldThomas termDarwin term3.4 Dirac equation in the central force field3.4 Dirac equation in the central force fieldQuantum number K3.4 Dirac equation in the central force field3.4 Dirac equation in the central force field,2K HHcpcLpcpcLpcp

    14、 501003.4 Dirac equation in the central force field()pLipL3.4 Dirac equation in the central force field3.4 Dirac equation in the central force field3.4 Dirac equation in the central force field3.4 Dirac equation in the central force field22234LJL3.4 Dirac equation in the central force field3.4 Dirac

    15、 equation in the central force fieldRadial equations3.4 Dirac equation in the central force field1122112210012121jjjmmmjjjllllmlmyYYll 3.4 Dirac equation in the central force field3.4 Dirac equation in the central force field3.4 Dirac equation in the central force fieldWe take12()();()()u rrg ru rrf

    16、 r3.5 Solution of the Dirac equation in the Coulomb fieldMotivationDiscussion the Hydrogen atomFine structure3.5 Solution of the Dirac equation in the Coulomb field3.5 Solution of the Dirac equation in the Coulomb field11211121()0()0qqqqqqqqsqaabbsqbbaa 1020smmmsmmmuebuea3.5 Solution of the Dirac eq

    17、uation in the Coulomb field0000()0()0sabsba3.5 Solution of the Dirac equation in the Coulomb field12nnab 3.5 Solution of the Dirac equation in the Coulomb field112121()()0nnsnaasnab 222()()mcEsnE3.5 Solution of the Dirac equation in the Coulomb fieldn=0,1,2,n=1,2,33.5 Solution of the Dirac equation

    18、in the Coulomb field22222222222311()1()1()13()224ionEmcEmcZnZZmcZnnn3.5 Solution of the Dirac equation in the Coulomb fieldGround state 1S1/2(n=0,=-1,n=1,j=1/2)3.5 Solution of the Dirac equation in the Coulomb field3.5 Solution of the Dirac equation in the Coulomb field3.5 Solution of the Dirac equa

    19、tion in the Coulomb fieldQuestionDirac eq+non-relativistic limit Sch eq Z137?No limit for ZUniform charged sphere?No limit for ZFine structure Enj En for Sch eq3.6 Klein paradoxAnother question for the non-relativistic limit of Dirac equationDoes positron existScalarlike potential and vectorlike pot

    20、ential3.6 Klein paradox3.6 Klein paradox3.6 Klein paradoxAt the infinity,the wave function is not zero,which means that there is only the scattering state solution instead of bound state solution3.6 Klein paradoxDirac equation(non-relativistic limit)Sch eqV(r)=grV(r)=gr|roscillating|r0Scattering sta

    21、tesBound statesCannot confine quarksconfinement3.6 Klein paradoxThe physics of Klein paradox3.6 Klein paradox3.6 Klein paradox313100kkkkkkEeVmcicxEeVmcicx0000eVVzeVz3.6 Klein paradox3.6 Klein paradox3.6 Klein paradox3.6 Klein paradox3.6 Klein paradox0220(2)()()()riiV cE cpuuFuV cppriuu F2202202()()(

    22、)rriiV cu uuE cp uV cpp2rriiiipccuuu vuu uE3.6 Klein paradox3.6 Klein paradox3.6 Klein paradox3.6 Klein paradox3.6 Klein paradox3.6 Klein paradox2000000222002222222lim()lim()2()()VEVVVVVccccEEccEEEcccV mR Vpppmcppp3.6 Klein paradoxIf p=mc3.6 Klein paradoxThe explanation of Klein paradox3.6 Klein par

    23、adox3.6 Klein paradox3.6 Klein paradox3.6 Klein paradox3.6 Klein paradox2*1122*122*220222zrefIzIIzp cja aeEmcp cjC CeEmcp cjb beVEmc 3.6 Klein paradox3.6 Klein paradox3.6 Klein paradox3.7 MIT bag modelMotivation:can we establish a model to confine quark scalarlike potential3.7 MIT bag model3.7 MIT b

    24、ag model3.7 MIT bag modelIntroducing scalarlike potential3.7 MIT bag model3.7 MIT bag model3.7 MIT bag modelWhen gg we find a exponentially decaying solution3.7 MIT bag modelSolution of step function3.7 MIT bag model3.7 MIT bag model3.7 MIT bag model3.7 MIT bag model3.7 MIT bag model3.7 MIT bag model3.7 MIT bag model

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:苏汝铿高等量子力学讲义(英文版)Chapter3-Relat汇总课件.ppt
    链接地址:https://www.163wenku.com/p-4366284.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库