数学(理)易错知识清单.pdf
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《数学(理)易错知识清单.pdf》由用户(四川天地人教育)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 知识 清单 下载 _其它资料_高考专区_数学_高中
- 资源描述:
-
1、 理科数学理科数学 一、集合与常用逻辑用语一、集合与常用逻辑用语 易错知识清单 1.集合的概念与运算集合的概念与运算 (1)解题时要明确集合中元素的特征,关注集合的代表元素(集合是点集、数集还是图形 集). (2)集合中的元素具有确定性、无序性和互异性,在求解有关集合的问题时,尤其要注意 元素的互异性. (3)空集是任何集合的子集,是任何非空集合的真子集,要时刻注意对空集的讨论,防止 漏解. (4)解题时注意区分两大关系:一是元素与集合的从属关系,二是集合与集合的包含关系. (5)Venn 图图示法和数轴图示法是进行集合交、并、补运算的常用方法,其中运用数轴 图示法时要特别注意端点是实心还是空
2、心. (6)处理集合问题时,一定要注意检验结果是否与题设相矛盾. 2.命题及其关系、充分条件与必要条件命题及其关系、充分条件与必要条件 (1)当一个命题有大前提而要写出其他三种命题时,必须保留大前提. (2)判断命题的真假及写四种命题时,一定要明确命题的结构,可以先把命题改写成“若 p 则 q”的形式. (3)判断条件之间的关系时要注意条件之间关系的方向,正确理解“p 的一个充分而不必 要条件是 q”等语言. 3.简单的逻辑联结词、命题的否定与否命题简单的逻辑联结词、命题的否定与否命题 (1)pq 为真命题,只需 p、q 有一个为真即可;pq 为真命题,必须 p、q 同时为真. (2)p 或
3、q 的否定:非 p 且非 q;p 且 q 的否定:非 p 或非 q. (3)命题的否定与否命题: “否命题”是对原命题“若 p,则 q”的条件和结论分别加以否定而得到的命题,它既否定 其条件,又否定其结论;“命题的否定”即“非 p”,只是否定命题 p 的结论. 二、函数与导数二、函数与导数 易错知识清单 1.分段函数分段函数 在求分段函数的值 f (x0 ) 时,要先判断 x0 属于定义域的哪个子集,然后代入相应的关系式; 分段函数的值域应是其定义域内不同子集上各关系式的取值范围的并集. 2.函数的单调性与最值函数的单调性与最值 (1)区分两个概念:“函数的单调区间”和“函数在某区间上单调”,
4、前者是指函数具备 单调性的“最大”的区间,后者是前者“最大”区间的子集. (2)函数的单调区间不一定是整个定义域,可能是定义域的子集,但一定是连续的. (3)函数的额单调性是针对定义域内的某个区间而言的,函数在某个区间上是单调函数, 1 但在整个定义域上不一定是单调函数,如函数 y= x 在(-,0)和(0,+)上都是减函 数,但在定义域上不具有单调性. (4)若函数在两个不同的区间上单调性相同,则这两个区间要分开写,不能写成并集.例如, 函数 f(x)在区间(-1,0)上是减函数,在(0,1)上也是减函数,但在(-1,0)(0,1)上却不 一定是减函数,如函数 f (x) 1x . 3.函数
5、的奇偶性与周期性函数的奇偶性与周期性 (1)f(0)=0 既不是函数 f(x)是奇函数的充分条件,也不是必要条件. (2)判断分段函数的奇偶性要有整体的观点,可以分类讨论,也可以利用图象进行判断. 4.二次函数与幂函数二次函数与幂函数 (1)对于函数 y ax2 bx c ,要认为它是二次函数,就必须满足 a0,当题目条件未 说明 a0 时,就要讨论 a=0 和 a0 两种情况. (2)幂函数的图象一定会出现在第一象限,一定不会出现在第四象限,至于是否出现在第 二、三象限,要看函数的奇偶性;幂函数的图象最多能同时出现在两个象限内;如果幂函数 图象与坐标轴相交,则交点一定是原点. 5.指数与指数
6、函数指数与指数函数 (1)指数函数的底数不确定时,单调性不明确,从而无法确定其最值,故应分 a1 和 00,在无 M0 的条件下应为 loga M loga M |( 为偶数). (2)指数函数 y a x (a0,且 a1)与对数函数 y loga x (a0,且 a1)互为反函数,应 从概念、图象和性质三个方面理解它们之间的联系与区别. (3)解决与对数函数有关的问题时需注意两点:务必先研究函数的定义域;注意对数 底数的取值范围. 7.函数的图象函数的图象 (1)函数图象的每次变换都是针对自变量“x”而言,如从 f(-2x)的图象到 f(-2x+1)的图象 是向右平移 12 个单位,即把
7、x 变成 x- 12 . (2)当图形不能准确地说明问题时,可借助“数”的精确性进行求解,解题过程中要注重 数形结合思想的运用. 8.函数与方程函数与方程 (1)函数 f(x)的零点是一个实数,是方程 f(x)=0 的根,也是函数 y=f(x)的图象与 x 轴交点的 横坐标. (2)函数零点存在性定理是零点存在的一个充分条件,而不是必要条件;判断零点个数还 要依据函数的单调性、对称性或结合函数图象. 9.函数模型及其应用函数模型及其应用 (1)函数模型应用不当,是常见的解题错误.所以要正确理解题意,选择适当的函数模型. (2)要特别关注实际问题的自变量的取值范围,合理确定函数的定义域. (3)
8、注意问题反馈.在解决函数模型后,必须验证这个数学结果对实际问题的合理性. 10.导数的概念及运算导数的概念及运算 (1)利用公式求导时要特别注意除法公式中分子中的符号,防止与乘法公式混淆.复合函 数的导数要正确分解函数的结构,由外向内逐层求导. (2)求曲线切线时,要分清在点 P 处的切线与过点 P 的切线的区别,前者只有一条,而后 者包括了前者. (3)曲线的切线与曲线的交点个数不一定只有一个. 11.导数与函数的单调性、极值、最值导数与函数的单调性、极值、最值 (1)求函数单调区间与函数极值时要养成列表的习惯,可使问题直观且有条理,减小失分 的可能性. (2)求函数最值时,不可想当然地认为
9、极值点就是最值点,要通过认真比较才能下结论. (3)解题时要注意区别求单调性和已知单调性的问题,处理好 f (x)=0 时的情况;区分极 值点和导数为 0 的点. 12.导数的综合应用导数的综合应用 (1)若函数 f(x)在某个区间内单调递增,则 f (x)0,而不是 f (x)0(f (x)=0 在有限个 点处取到). (2)利用导数解决实际生活中的优化问题时,要注意问题的实际意义. 13.定积分定积分 (1)被积函数若含有绝对值符号,应先去绝对值符号,再分段积分. (2)若定积分式子中有几个不同的参数,则必须先分清谁是积分变量. (3)定积分式子中隐含的条件是积分上限大于积分下限. (4)
10、定积分的几何意义是曲边梯形的面积,但要注意面积非负,而定积分的结果可以为负. (5)将要求面积的图形进行科学而准确地划分,可使面积的求解变得简捷. 三三 、数列、数列 易错知识清单 1.数列的概念及简单表示法数列的概念及简单表示法 (1)数列是一种特殊的函数,在利用函数观点研究数列时,一定要注意自变量的取值,如 数列 an f (n) )和函数 y f (x) 的单调性是不同的. (2)数列的通项公式不一定唯一. 2.等差数列及其前等差数列及其前 n 项和项和 (1)当公差 d0 时, an 是 n 的一次函数,当公差 d=0 时, an 为常数. (2)公差不为 0 的等差数列的前 n 项和
11、 sn 是 n 的二次函数,且常数项为 0.若某数列的前 n 项和 Sn 是常数项不为 0 的二次函数,则该数列不是等差数列,它从第二项起成等差数列. 3.等比数列及其前等比数列及其前 n 项和项和 (1)注意等比数列中的分类讨论. (2)由 an1 q an (q0),并不能判断数列 an 是等比数列,还要验证 a1 是否为 0. 4.数列求和数列求和 (1)直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数时,应对公 比是否为 1 进行分类讨论. (2)在应用错位相减法时,注意观察未合并项的正负号;结论中形如 an,an+1 的式子要 合并. (3)在应用裂项相消法时,要注意
12、消项的规律具有对称性,即前剩多少项后剩多少项. 四、三角函数四、三角函数 易错知识清单 1.任意角的三角函数任意角的三角函数 (1)注意易混概念的区别:象限角、锐角、小于 90的角是概念不同的三类角.第一类是 象限角,第二类、第三类是区间角. (2)角度制与弧度制可利用 180= rad 进行互化,在同一个式子中,采用的度量制度 必须一致,不可混用. (3)已知三角函数值的符号确定角的终边位置时不要遗漏终边在坐标轴上的情况. 2.同角三角函数的基本关系与诱导公式同角三角函数的基本关系与诱导公式 (1)利用诱导公式进行化简求值时,先利用公式化任意角的三角函数为锐角三角函数,其 步骤为:去负脱周化
13、锐.要特别注意函数名称和符号的确定. (2)在利用同角三角函数的平方关系时,若开方,要特别注意判断符号. (3)注意求值与化简后的结果要尽可能有理化、整式化. 3.三角函数的图象与性质三角函数的图象与性质 (1)闭区间上最值或值域问题,要先在定义域基础上分析单调性,含参数的最值问题,要 讨论参数对最值的影响. (2)要注意求函数 y=Asin(x+)的单调区间时 的符号,尽量化成 0 时的情况. (3)三角函数的最值不一定在自变量区间的端点处取得,直接将两个端点处的函数值作为 最值是错误的. 4.函数函数 y=A sin(x+)的图象及应用的图象及应用 (1)由函数 y=sin x 的图象经过
14、变换得到 y=Asin(x+)的图象,如先伸缩,再平移时,要 把 x 前面的系数提取出来. (2)复合形式的三角函数的单调区间的求法.函数 y=Asin(x+)(A0,0)的单调区间的 确定,基本思想是把 x+ 看作一个整体.若 b acbc 或 ab anbn,对于正数 a、b 才成立. a 1 ab,对于正数 a、b 才成立. (4) b (5)注意不等式性质中“ ”的区别,如 ab,bc ac,反过来 ac,不能 推出 ab,bc. (6)作商法比较大小时,要注意两式的符号. (7)求范围问题时,如果多次利用不等式,则可能扩大变量的取值范围. 2.不等式的解法及应用不等式的解法及应用 (
15、1)对于不等式 ax2+bx+c0,求解时不要忘记讨论 a=0 时的情况. (2)当 0(a0)的解集为 R 还是空集. (3)对于含参数的不等式要注意选好分类标准,避免盲目讨论. (4)注意用“根轴法”解整式不等式的注意事项及解分式不等式 f (x) a(a0)的一般思路 g (x) 移项通分. (5)求解含参数不等式的通法是“定义域为前提,函数增减性为基础,分类讨论是关键”.注 意:求解完之后要写上“综上,原不等式的解集是”;若按参数讨论,最后应按参数 ”与“ 取值分别说明其解集;若按未知数讨论,最后应求并集. 提醒:提醒:解不等式就是求不等式的解集,最后务必用集合的形式表示; 不等式解集
展开阅读全文