书签 分享 收藏 举报 版权申诉 / 30
上传文档赚钱

类型人教版八年级上册122三角形全等的判定-ASA、AAS课件.pptx

  • 上传人(卖家):晟晟文业
  • 文档编号:4350744
  • 上传时间:2022-12-01
  • 格式:PPTX
  • 页数:30
  • 大小:11.25MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《人教版八年级上册122三角形全等的判定-ASA、AAS课件.pptx》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    人教版八 年级 上册 122 三角形 全等 判定 ASA AAS 课件
    资源描述:

    1、三角形全等的判定ASA、AAS复习巩固:我们已经学习了哪些判定两个三角形全等的方法,它们分别需要哪些条件呢?AB=ABBC=BCAC=AC AB=ABA=AAC=AC ABCA BC 思考:思考:两个角和一条边分别相等的两个三角形是否全等呢?ABCA=A B=BABCABCABCAB=ABA=A B=BBC=BC操作操作先任意画出一个ABC,再画出一个ABC,使AB=AB,A=A,B=B 把画好的ABC剪下来,放到ABC 上,它们全等吗?ABC现象:两个三角形放在一起能完全重合说明:这两个三角形全等条件:AB=AB,A=A,B=B.“ASA”判定方法:两角和它们的夹边分别相等的两个三角形全等.

    2、(可简写成“角边角”或“ASA”)ABCABC用符号语言表达:在ABC 与 ABC 中,ABC ABC (ASA)A=A,AB=AB,B=B,ABCABC思考:如果ABC和ABC满足,使BC =BC,A=A,B=BABC 和ABC是全等的吗?ABCABC分析:A+B+C=180 A+B+C=180|C=C BC为B和C的夹边BC 为B和C 的夹边ABC ABC ABCABC解:解:ABC ABC .理由:理由:在在ABC 中,A+B+C=180.在在ABC中,A+B+C=180.A=A,B=B,C=C.在在ABC 与与 ABC中,中,C=C ,BC=BC,B=B,ABC ABC (ASA)条件

    3、:BC=B C ,A=A ,B=B.“AAS”判定方法:两角和其中一角的对边分别相等的两个三角形全等.(可简写成“角角边”或“AAS”)ABCABC在ABC 与 ABC 中,ABC ABC (AAS)A=A,B=B,BC=BC ,用符号语言表达用符号语言表达:ABCABC例 如图,点D 在AB上,点E 在AC上,BA=AC,B=C求证:AE=ADABCDE目标:AE=AD性质ABE ACDASA例如图,点D 在AB上,点E 在AC上,BA=AC,B=C求证:AE=ADABCDE证明:在ABE 和ACD 中,ABE ACD(ASA)AE=ADB=C,AB=AC,A=A,练习ABBC,ADDC,垂

    4、足分别为B,D,1=2,求证:AB=AD证明:ABBC,ADDC,B=D=90.ABC ADC(AAS)AB=ADB=D=90,1=2,AC=AC,CDBA1 2在ABC 和ADC 中,例如图,要测量池塘两岸相对的两点A,B的距离,可以在AB的垂线BF上取两点C、D,使BC=CD,再画出BF的垂线DE,使E与A,C在一条直线上,这时测得DE的长度就是AB的长,为什么?目标:AB=DE性质ABC EDCASAABC ADC(AAS)A=A,B=B,练习ABBC,ADDC,垂足分别为B,D,1=2,BC=BC,现象:两个三角形放在一起能完全重合三角形全等的判定ASA、AAS在ABC 和ADC 中,

    5、课堂小结在证明三角形全等的过程中,往往需要我们构造所需条件.理由:在ABC 中,A+B+C=180.条件:BC=B C ,A=A ,B=B.证明:ABBF,DEBF,B=CDE=90.ABC EDC(ASA)AB=DEB=CDE=90,BC=CD,ACB=ECD,在ABC 和EDC 中,ABCDE例 如图,AEBE,ADDC,CD=BE,DAB=EAC求证:AC=AB 性质ADC AEBAAS证明:1=2,1+3=2+3,即DAC=EAB.AEBE,ADDC,D=E=90.ABCDE例如图,AEBE,ADDC,CD=BE,DAB=EAC求证:AC=AB 132DAC=EAB,D=E,CD=BE

    6、,ADC AEB(AAS)AC=AB证明:在ADC 和AEB 中,例如图,AEBE,ADDC,CD=BE,DAB=EAC求证:AC=AB ABCDE132练习如图,已知1=2,B=D,求证:ABCADC.12ABDCABC ADC(AAS)B=D,3=4,AC=AC,在ABC 和ADC 中,证明:3+1=180,4+2=180,1=2,3=4.34练习如图,已知1=2,B=D,求证:ABCADC.12ABDC56ABC ADC(AAS)B=D,5=6,AC=AC,在ABC 和ADC 中,证明:1 是ABC的外角,2 是ADC的外角,5+B=1,6+D=2.B=D,1=2,5=6.课堂小结本节课

    7、学习了几种判断两个三角形全等的方法?分别是什么?它们之间有什么共同点和区别?ABC“ASA”判定方法:两角和它们的夹边分别相等的两个三角形全等.ABCABC“AAS”判定方法:两角和其中一角的对边分别相等的两个三角形全等.ABC课堂小结本节课学习了几种判断两个三角形全等的方法?分别是什么?它们之间有什么共同点和区别?共同点:都要求两角和一边相等区别:ASA夹边 AAS对边ABCABCABCABC课堂小结本节课学习了几种判断两个三角形全等的方法?分别是什么?它们之间有什么共同点和区别?由上述两个判定我们发现,当两个三角形有两个角分别相等后,相等的那条边可以为三边中的任意边。因此,我们可以归纳为“

    8、若两角一边相等,则三角形全等”.ABCABCABCABC课堂小结在证明三角形全等的过程中,往往需要我们构造所需条件.注意图形中隐藏的条件.ABCDE公共角CDBA公共边对顶角(可简写成“角角边”或“AAS”)4+2=180,理由:在ABC 中,A+B+C=180.求证:ABC ADC.课堂小结在证明三角形全等的过程中,往往需要我们构造所需条件.现象:两个三角形放在一起能完全重合证明:1=2,即DAC=EAB.以在AB的垂线BF上取两点C、D,使BC=CD,再画出BF的垂线DE,使E与A,C在一条直线上,这时测得DE的长度就在ABC 和ADC 中,由上述两个判定我们发现,当两个三角形有两个角分别

    9、相等后,相等的那条边可以为三边中的任意边。即DAC=EAB.求证:ABC ADC.两角和其中一角的对边分别相等的两个三角形全等.AB=AB,课堂小结在证明三角形全等的过程中,往往需要我们构造所需条件.利用等式性质或几何知识转化条件.ABCDE12ABDC课后作业课后作业1.1.如图,1=2,B=D,求证:AB=CD.课后作业课后作业2.2.如图,ACB=90,AC=CB,ADCE,BECE,垂足分别为D,E.求证:ACDCBE.课后作业课后作业3.3.如图,A,B两点被池塘隔开,某同学用以下方法测得池塘的宽度AB:过点B作BCAB,作BCD=BCA,使A,B,D三点在一条直线上,则测量出BD的长即为AB的长,这是为什么呢?同学们,再见!

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:人教版八年级上册122三角形全等的判定-ASA、AAS课件.pptx
    链接地址:https://www.163wenku.com/p-4350744.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库