小专题(二)全等三角形的基本模型课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《小专题(二)全等三角形的基本模型课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 小专题二 全等三角形的基本模型课件 专题 全等 三角形 基本 模型 课件
- 资源描述:
-
1、第十二章全等三角形第十二章全等三角形小专题小专题(二)全等三角形的基本模型二)全等三角形的基本模型类型类型1平移模型平移模型1如图,如图,ACDF,ADBE,BCEF.求证:求证:(1)ABCDEF;(2)ACDF.证明:证明:(1)ADBE,ADDBBEDB,即,即ABDE.在在ABC和和DEF中,中,ABCDEF(SSS)(2)ABCDEF,AEDF.ACDF.类型类型2对称模型对称模型2如图,如图,ACBC,ADBD,ADBC,CEAB,DFAB,垂足分别是,垂足分别是E,F,那么,那么CEDF吗?吗?解:解:CEDF.理由:理由:ACBC,ADBD,ACBBDA90.在在RtABC和和
2、RtBAD中,中,RtABCRtBAD(HL)ACBD,CABDBA.CEAB,DFAB,AECBFD90.在在ACE和和BDF中,中,ACEBDF(AAS)CEDF.3我们把两组邻边分别相等的四边形叫做我们把两组邻边分别相等的四边形叫做“筝形筝形”如图,如图,四边形四边形ABCD是一个筝形,其中是一个筝形,其中ADCD,ABCB.(1)求证:求证:ABDCBD;(2)设对角线设对角线AC,BD相交于点相交于点O,OEAB,OFCB,垂足,垂足分别是分别是E,F.请直接写出图中的所有全等三角形请直接写出图中的所有全等三角形(ABDCBD除外除外)解:解:(1)证明:在证明:在ABD和和CBD中
3、,中,ABDCBD(SSS)ABDCBD.(2)ABOCBO,OADOCD,OAEOCF,EBOFBO.4某产品的商标如图所示,某产品的商标如图所示,O是线段是线段AC,DB的交点,且的交点,且ACBD,ABCD,小华认为图中的两个三角形全等,他的,小华认为图中的两个三角形全等,他的思考过程是:思考过程是:ACDB,AOBDOC,ABDC,ABODCO.你认为小华的思考过程对吗?如果正确,指出他用的是判你认为小华的思考过程对吗?如果正确,指出他用的是判别三角形全等的哪个条件;如果不正确,写出你的思考过程别三角形全等的哪个条件;如果不正确,写出你的思考过程解:小华的思考不正确,因为解:小华的思考
4、不正确,因为AC和和BD不是这两个三角形的边不是这两个三角形的边正确的解答是:连接正确的解答是:连接BC,在在ABC和和DCB中,中,ABCDCB(SSS)AD.【思考】【思考】你还能用其他解法解决此题吗?试试看在在AOB和和DOC中,中,AOBDOC(AAS)类型类型3旋转模型旋转模型5如图,四边形如图,四边形ABCD的对角线相交于点的对角线相交于点O,ABCD,O是是BD的中点的中点(1)求证:求证:ABOCDO;(2)若若BCAC4,BD6,求,求BOC的周长的周长解:解:(1)证明:证明:ABCD,BAODCO,ABOCDO.O是是DB的中点,的中点,BODO.在在ABO和和CDO中,
展开阅读全文