2021年八年级数学上册第十二章全等三角形(人教版)(优秀)课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2021年八年级数学上册第十二章全等三角形(人教版)(优秀)课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 八年 级数 上册 第十二 全等 三角形 人教版 优秀 课件 下载 _八年级上册_人教版(2024)_数学_初中
- 资源描述:
-
1、12.2三角形全等的判定第十二章 全等三角形导入新课讲授新课当堂练习课堂小结学练优八年级数学上(RJ)教学课件 第第2 2课时课时“边边角角边边”情境引入学习目标1探索并正确理解三角形全等的判定方法“SAS”.(重点)2会用“SAS”判定方法证明两个三角形全等及进行简单的应用(重点)3.了解“SSA”不能作为两个三角形全等的条件(难点)1.若AOCBOD,则有对应边:AC=,AO=,CO=,对应角有:A=,C=,AOC=.ABOCD导入新课导入新课BDBODOBDBOD复习引入2.填空:已知:AC=AD,BC=BD,求证:AB是DAC的平分线.AC=AD (),BC=BD (),=(),ABC
2、ABD().1=2 ().AB是DAC的平分线(角平分线定义).ABCD12已知已知SSS证明:在ABC和ABD中,AB AB 公共边公共边全等三角形的对应角相等讲授新课讲授新课三角形全等的判定(“边角边”定理)一作图探究尺规作图画出一个ABC,使ABAB,ACAC,AA(即使两边和它们的夹角对应相等).把画好的ABC剪下,放到ABC上,它们全等吗?A B C A B C A D E B C 作法:(1)画DAE=A;(2)在射线AD上截取AB=AB,在射线AE上截取AC=AC;(3)连接BC.在ABC 和 ABC中,ABC AB C(SAS)u 文字语言:文字语言:两边和它们的夹角分别相等的
3、两个三角形全等(简写成“边角边”或“SAS”)知识要点“边角边”判定方法u几何语言:AB=AB,A=A,AC=AC,A B C A B C 必须是两边“夹角”例1 如果AB=CB,ABD=CBD,那么 ABD 和 CBD 全等吗?分析:ABD CBD.边边:角角:边边:AB=CB(已知),ABD=CBD(已知),?ABCD(SAS)BD=BD(公共边).典例精析ABCD证明:在ABD 和 CBD中,AB=CB(已知),ABD=CBD(已知),BD=BD(公共边),ABD CBD(SAS).想一想:现在例1的已知条件不改变,而问题改变成:问AD=CD吗?BD平分ADC吗?吗?由 ABD CBD可
4、得AD=CD(全等三角形的对应边全等三角形的对应边相等相等),BD平分ADC(全等三角形的对应角相等,(全等三角形的对应角相等,ADB=CDB).例2 如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到点D,使CDCA,连接BC并延长到点E,使CECB连接DE,那么量出DE的长就是A、B的距离,为什么?CAEDB分析:如果能证明ABC DEC,就可以得出AB=DE.由题意知,ABC和DEC具备“边角边”的条件.证明:在ABC 和DEC 中,ABC DEC(SAS).AB=DE(全等三角形的对应边相等).AC=DC(已知),),1=2(对顶角相
展开阅读全文