14全称量词与存在量词课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《14全称量词与存在量词课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 14 全称 量词 存在 课件
- 资源描述:
-
1、1.4 1.4 全称量词与存在量词全称量词与存在量词第一课时第一课时2022年12月1日星期四 张勇复习回顾复习回顾 1.1.对于命题对于命题p、q,命题,命题pq,pq,p的含义分别如何?这些命题与的含义分别如何?这些命题与p、q的的真假关系如何?真假关系如何?pq:用联结词:用联结词“且且”把命题把命题p和命题和命题q联结联结起来得到的命题,当且仅当起来得到的命题,当且仅当p、q都是真命题都是真命题时,时,pq为真命题为真命题.pq:用联结词:用联结词“或或”把命题把命题p和命题和命题q联结联结起来得到的命题,当且仅当起来得到的命题,当且仅当p、q都是假命题都是假命题时,时,pq为假命题为
2、假命题.p:命题:命题p的否定,的否定,p与与p的真假相反的真假相反.2 2在我们的生活和学习中,常遇到在我们的生活和学习中,常遇到这样的命题:这样的命题:(1 1)所有所有中国公民的合法权利都受到中中国公民的合法权利都受到中华人民共和国宪法的保护;华人民共和国宪法的保护;(2 2)对)对任意任意实数实数x,都有,都有x2 200;(3 3)存在存在有理数有理数x,使,使x2 22 20;0;对于这类命题,我们将从理论上进行对于这类命题,我们将从理论上进行深层次的认识深层次的认识.探究(一):全称量词的含义和表示探究(一):全称量词的含义和表示 思考思考1:1:下列各组语句是命题吗?两者有下列
3、各组语句是命题吗?两者有什么关系什么关系?(1 1)x3 3;对对所有所有的的xR,x3.3.(2 2)2 2x1 1是整数;是整数;对对任意任意一个一个xZ,2x1 1是整数是整数.(3 3)方程)方程x22xa0 0有实根;有实根;任给任给a0 0,方程,方程x22xa0 0有实根有实根.短语短语“所有的所有的”“”“任意一个任意一个”“任给任给”等,在逻辑中通常叫做等,在逻辑中通常叫做全称量全称量词词,并用符号,并用符号“”“”表示,你还能列举表示,你还能列举一些常见的全称量词吗?一些常见的全称量词吗?“一切一切”,“每一个每一个”,“全体全体”等等 全称量词:全称量词:含有全称量词的命
4、题叫做含有全称量词的命题叫做全称命题全称命题,如如“对所有的对所有的xR,x3”,“对任意对任意一个一个xZ,2x1是整数是整数”等等。读作:读作:“对任意对任意x属于属于M,有,有p(x)成立成立”表示:表示:将含有变量将含有变量x的语句用的语句用p(x)、q(x)、r(x)等表示,变量等表示,变量x的取值范围用的取值范围用M表表示,示,那么,全称命题那么,全称命题“对对M M中任意一个中任意一个x,有有 p(x)成立成立”可用符号简记为可用符号简记为 xM,p(x)”全称命题:全称命题:思考思考5 5:下列命题是全称命题吗?其真假下列命题是全称命题吗?其真假如何?如何?(1 1)所有的素数
5、是奇数;)所有的素数是奇数;(2 2)xR,x21111;(3 3)对每一个无理数)对每一个无理数x,x2 2也是无理数;也是无理数;(4 4)所有的正方形都是矩形)所有的正方形都是矩形.真真假假真真假假思考思考6 6:如何判定一个全称命题的真假?如何判定一个全称命题的真假?xM,p(x)为真:为真:对集合对集合M中每一个中每一个元素元素x,都有,都有p(x)成立;成立;xM,p(x)为假:为假:在集合在集合M中中存在存在一一个元素个元素x0 0,使得,使得p(x0)不成立不成立.探究探究(二二):存在量词的含义和表示存在量词的含义和表示 思考思考1 1:下列各组语句是命题吗?二者有下列各组语
6、句是命题吗?二者有什么关系?什么关系?(1 1)2x1 13 3;存在一个存在一个x0R,使,使2 2x0 01 13.3.(2 2)x能被能被2 2和和3 3整除;整除;至少有一个至少有一个x0Z,x0能被能被2 2和和3 3整除整除.(3 3)|x1|1|1 1;有些有些x0R,使,使|x0 01|1|1.1.短语短语“存在一个存在一个”“”“至少有一至少有一个个”“”“有些有些”等,在逻辑中通常叫做等,在逻辑中通常叫做存存在量词在量词,并用符号,并用符号“”“”表示,你还能表示,你还能列举一些常见的存在量词吗?列举一些常见的存在量词吗?“有一个有一个”,“对某个对某个”,“有的有的”等等
7、 存在量词:存在量词:含有存在量词的命题叫做含有存在量词的命题叫做特称命题特称命题,如如“存在一个存在一个x0R,使使2 2x01 13”3”,“至少有一个至少有一个x0Z,x0能被能被2 2和和3 3 整除整除”等等。读作:读作:存在存在M中的元素中的元素x0 0,使,使p(x0)成立成立.表示:表示:特称命题特称命题“存在存在M M中元素中元素x0,使,使p(x0)成立成立”用符号简记为用符号简记为 x0M,p(x0)特称命题:特称命题:思考思考5 5:下列命题是特称命题吗?其真假下列命题是特称命题吗?其真假如何?如何?(1 1)有的平行四边形是菱形;)有的平行四边形是菱形;(2 2)有一
8、个实数)有一个实数x0 0,使使 ;(3 3)有一个素数不是奇数;)有一个素数不是奇数;(4 4)存在两个相交平面垂直于同一条直)存在两个相交平面垂直于同一条直线;线;(5 5)有些整数只有两个正因数;)有些整数只有两个正因数;(6 6)有些实数的平方小于)有些实数的平方小于0.0.200230 xx真真假假真真假假真真假假思考思考6 6:如何判定一个特称命题的真假?如何判定一个特称命题的真假?x0M,p(x0)为真:为真:能在集合能在集合M中找中找出一个元素出一个元素x0 0,使,使p(x0)成立;成立;x0M,p(x0)为假:为假:在集合在集合M中,使中,使p(x)成立的元素成立的元素x不
9、存在不存在.对对 都不成立都不成立.00,()xM P x理论迁移理论迁移 例例1 1 下列命题是全称命题还是特称命下列命题是全称命题还是特称命题,并判断其真假题,并判断其真假.(1 1)任意实数的平方都是正数;)任意实数的平方都是正数;(2 2)0 0乘以任何数都等于乘以任何数都等于0 0;(3 3)有的老师既能教中学数学,也能)有的老师既能教中学数学,也能 教中学物理;教中学物理;全称命题(假)全称命题(假)全称命题(真)全称命题(真)特称命题(真)特称命题(真)(4 4)某些三角形的三内角都小于)某些三角形的三内角都小于6060;(5 5)任何一个实数都有相反数)任何一个实数都有相反数.
10、特称命题(假)特称命题(假)全称命题(真)全称命题(真)例例2 2 判断下列命题的真假判断下列命题的真假.(1)xR,x2x;(2)xR,sinxcosxtanx;(3)xQ,x280;(4)xR,x2x10;(5)xR,sinxcosx=2;(6)a,bR,真真假假假假假假假假真真2abab 指出下述推理过程的逻辑上的错误指出下述推理过程的逻辑上的错误:第一步:设第一步:设a=b,则有,则有a2=ab 第二步:等式两边都减去第二步:等式两边都减去b2,得得a2-b2=ab-b2第三步:因式分解得第三步:因式分解得(a+b)(a-b)=b(a-b)第四步:等式两边都除以第四步:等式两边都除以a
展开阅读全文