不定积分-(公式大全)课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《不定积分-(公式大全)课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 不定积分 公式 大全 课件
- 资源描述:
-
1、第5章 不定积分5.1 原函数与不定积分的概念一、原函数与不定积分 通过对求导和微分的学习,我们可以从一个函数yf(x)出发,去求它的导数f(x)那么,我们能不能从一个函数的导数f(x)出发,反过来去求它是哪一个函数(原函数)的导数呢?定义 已知f(x)是定义在某区间上的一个函数,如果存在函数F(x),使得在该区间上的任何一点x处都有F(x)f(x),那么称函数F(x)为函数f(x)在该区间上的一个原函数。例1 求下列函数的一个原函数:f(x)2x f(x)cosx解:(x2)2x x2是函数2x的一个原函数 (sinx)cosx sinx是函数cosx的一个原函数 这里为什么要强调是一个原函
2、数呢?因为一个函数的原函数不是唯一的。例如在上面的中,还有(x21)2x,(x21)2x 所以 x2、x21、x21、x2C(C为任意常数)都是函数f(x)2x的原函数。定理5.1 设F(x)是函数f(x)在区间I上的一个原函数,C是一个任意常数,那么,F(x)C也是f(x)在该区间I上的原函数 f(x)该在区间I上的全体原函数可以表示为F(x)C证明:F(X)CF(x)(C)f(x)F(x)C也是f(x)的原函数 略 这说明函数f(x)如果有一个原函数F(x),那么它就有无穷多个原函数,它们都可以表示为F(x)C的形式。定义5.2 函数f(x)的全体原函数叫做函数f(x)的不定积分,记作f(
3、x)dx,其中叫做积分号,f(x)叫做被积函数,x叫做积分变量。求函数f(x)的不定积分就是求它的全体原函数,因此,f(x)dxF(x)C 其中C是任意常数,叫做积分常数。例2 求下列不定积分 x5dx sinxdx解:是x5的一个原函数 cosx是sinx的一个原函数 661xCxdxx6561Cxxdxcossin二、不定积分的几何意义 设F(x)是函数f(x)的一个原函数,则曲线yF(x)称为f(x)的一条积分曲线,曲线yF(x)C表示把曲线yF(x)上下平移所得到的曲线族。因此,不定积分的几何意义是指由f(x)的全体积分曲线组成的积分曲线族。例4 求斜率为2x且经过点(1,0)的曲线。
4、解:设所求曲线为yf(x),则f(x)2x,故yx2C,曲线过点(1,0)以x1、y0代入得012C,解得C1,因此,所求曲线为yx21。三、基本积分公式 由于积分运算是求导运算的逆运算,所以由基本求导公式反推,可得基本积分公式 dxxC xdx (-1)exdxexC sinxdxcosxC cosxdxsinxC sec2xdxtanxC csc2xdxcotxCCx111Cxdxx|ln1CaadxaxxlnCaxdxxaarcsin122Caxdxxaarctan122说明:冪函数的积分结果可以这样求,先将被积函数的指数加1,再把指数的倒数放在前面做系数。注意 不能认为 arcsinx
5、arccosx,他们之间的关系是 arcsinx2arccosxdxxx215求例Cxdxxdxxx23252321:解dxx2116求例两式都是本题的解又解CxdxxdxxCxdxxarccos)11(11arcsin11:222四、不定积分的性质 f(x)dxf(x)该性质表明,如果函数f(x)先求不定积分再求导,所得结果仍为f(x)F(x)dxF(x)C 该性质表明,如果函数F(x)先求导再求不定积分,所得结果与F(x)相差一个常数C kf(x)dxkf(x)dx(k为常数)该性质表明,被积函数中不为零的常数因子可以提到积分号的前面 f(x)g(x)dxf(x)dxg(x)dx 该性质表
6、明,两个函数的和或差的不定积分等于这两个函数的不定积分的和或差五、基本积分公式的应用例7 求(9x28x)dx解:(9x28x)dx9x2dx8xdx 33x2dx42xdx3x34x2C例11 求3xexdxdxxx24110求例Cxxxdxxdxxdxxxxdxxxarctan3111)1(11111:32222424解CeCeedxedxexxxxxx3ln13)3ln()3()3(3:解5.2 不定积分的计算一、直接积分法 对被积函数进行简单的恒等变形后直接用不定积分的性质和基本积分公式即可求出不定积分的方法称为直接积分法。运用直接积分法可以求出一些简单函数的不定积分。dxx211求例
7、Cxxxdxxdxdxxdxxxdxx23222312)12(1:解dxxxx223)3)(1(求再如Cxxxxdxxxxdxxxxxdxxxx1|ln361)113131(3333)3)(1(:2222322解一、第一换元法(凑微分法)如果被积函数的自变量与积分变量不相同,就不能用直接积分法。例如求cos2xdx,被积函数的自变量是2x,积分变量是x。这时,我们可以设被积函数的自变量为u,如果能从被积式中分离出一个因子u(x)来,那么根据f(u)u(x)dxf(u)duF(u)C就可以求出不定积分。这种积分方法叫做凑微分法。讲解例题例2 求2sin2xdx解:设u2x,则du2dx 2sin
8、2xdxsin2x2dxsinudu cosuCcos2xC注意:最后结果中不能有u,一定要还原成x。解:设ux21,则du2xdxdxxx42)1(3求例CxCuduudxxx323442)1(616121)1(解:设ux2,则du2xdx 设ucosx,则du-sinxdxdxxex225求例CeCeduexdxedxxexuuxx22222xdxtan7求例dxxxxdxcossintan:解CxCuduudxxxxdx|cos|ln|ln1)sin(cos1tan 当计算熟练后,换元的过程可以省去不写。例 求sin3xcosxdx 解:sin3xcosxdxsin3xd(sinx)si
9、n4xC dxxx1求例dxxxxdxxx11)1(1:解Cxxxdxxdx23252123)1(32)1(52)1()1()1()1(41二、第二换元积分法 例如,求 ,把其中最难处理的部分换元,令 则原式 ,再反解xu21,得dx2udu,代入这就是第二换元积分法。dxx1111 xudxu11duuduuudxx)111(212111CxxCuu|11|ln2121ln 2 (1)如果被积函数含有 ,可以用xasint换元。(2)如果被积函数含有 ,可以用xatant换元。dxxxsin求例tdtdxtxtx2,:2则令解CxCttdttdtttdxxxcos2cos2sin22sins
展开阅读全文