新人教版八年级数学上册课件《第13章-轴对称》(全章)教学课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《新人教版八年级数学上册课件《第13章-轴对称》(全章)教学课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第13章-轴对称 新人 八年 级数 上册 课件 13 轴对称 教学 下载 _八年级上册_人教版(2024)_数学_初中
- 资源描述:
-
1、13.1.1 轴对称第十三章 轴对称导入新课导入新课讲授新课讲授新课轴对称和轴对称图形一 如果一个一个图形沿一条直线折叠,直线两旁的部分能够互相互相重合重合,这个图形就叫做轴对称图形轴对称图形,这条直线就是它的对称轴对称轴.轴对称图形轴对称图形对称轴对称轴am想一想:下面的每对图形有什么共同特点?AABCBC对称轴对称轴 如果一个图形沿一条直线折叠折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线就是它的对称轴对称轴.折叠后重合的点是对应点,叫做对称点.如图点A、A 就是一对对称点.知识要点比较归纳轴对称图形两个图形成轴对称图形区别联系一个图形具有的特殊形状两个全等
2、图形的特殊的位置关系1.都是沿着某条直线折叠后能重合.2.可以互相转化.轴对称的性质二如图,ABC和ABC关于直线MN对称,点A,B,C分别是点A,B,C的对称点,线段AA,BB,CC与直线MN有什么关系?ABCABCNMAAMN,BBMN,CCMN.如图,MNAA,AP=AP.直线MN是线段AA 的垂直平分线.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.知识要点u线段垂直平分线的定义经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.图形轴对称的性质 一个轴对称图形的对称轴是否也具有上述性质呢?请你自己找一些轴对称图形来检验吧!类似地,轴对称图形
3、的对称轴,是任何一对对称点所连线段的垂直平分线.知识要点轴对称图形的性质ABA B MN如图,MN垂直平分AA,MN垂直平分BB.典例精析是是是?例1 下面这些图形是轴对称图形吗?如图所示的平行四边形不是轴对称图形.例2 做一做,找出下列各图形中的对称轴,并说明哪一个图形的对称轴最多.当堂练习当堂练习美国美国加拿大加拿大澳大利亚澳大利亚 2.国旗是一个国家的象征,观察下面的国旗哪些是轴对称图形?找出它们的对称轴.瑞典瑞典英国英国3.(1)整个图形是轴对称图形吗?对称轴是什么?(2)图中红色的三角形与哪些三角形成轴对称?(3)图形可以看作某两个图形成轴对称吗?4.请你利用1个等腰三角形、两个长方
4、形、三个圆,设计一些具有轴对称特征的图案,并用简练的文字说明你的创意.课堂小结课堂小结轴对称轴 对 称平行四边形不是轴对称图形轴对称图形定 义性质定 义性质轴 对 称 与轴对称图形联 系区 别线段的垂直平分线13.1.2 线段的垂直平分线的性质第十三章 轴对称第第1 1课时课时 线段的垂直平分线的性质和判定线段的垂直平分线的性质和判定导入新课导入新课问题引入1.给一条线段a,以a为底边的等腰三角形有几个?如果用三角板和刻度尺,你能画出至少三个吗?作图要点:利用三角尺、刻度尺作出线段a的垂直平分线,在垂直平分线上取点,连接可得符合条件的等腰三角形.a a讲授新课讲授新课线段垂直平分线的性质一你能
5、用不同的方法验证这一结论吗?如图,直线l垂直平分线段AB,P1,P2,P3,是l 上的点,请猜想点P1,P2,P3,到点A 与点B 的距离之间的数量关系点P1,P2,P3,到点A 与点B 的距离分别相等 ABlP1P2P3探究发现练一练:1.如图1所示,直线CD是线段PB的垂直平分线,点P为直线CD上的一点,且PA=5,则线段PB的长为()A.6 B.5 C.4 D.3PABCD2.如图2所示,在ABC中,BC=8cm,边AB的垂直平分线交AB于点D,交边AC于点E,BCE的周长等于18cm,则AC的长是 .图图1ABCDE图图2B10cm已知:如图,直线lAB,垂足为C,AC=CB,点P 在
6、l 上求证:PA=PB线段垂直平分线上的点到线段两个端点的距离相等验证结论证明:lAB,PCA=PCB又 AC=CB,PC=PC,PCA PCB(SAS)PA=PBPABlC解:ADBC,BD=DC,AD 是是BC 的垂直平分线,的垂直平分线,AB=AC 点C 在AE 的垂直平分线上,AC=CE例1 如图,ADBC,BD=DC,点C 在AE 的垂直平分线上,AB,AC,CE 的长度有什么关系?AB+BD与DE 有什么关系?A B C D E 典例精析线段垂直平分线的判定二反过来,如果PA=PB,那么点P是否在线段AB的垂直平分线上呢?PAB提出问题 已知:如图,PA=PB 求证:点P 在线段A
7、B 的垂直平分线上证明:过点P 作线段AB 的垂线PC,垂足为点C则PCA=PCB=90在RtPCA 和RtPCB 中,PA=PB,PC=PC,RtPCA RtPCB(HL)AC=BC又又 PCAB,点P 在线段AB 的垂直平分线上PABC知识要点线段垂直平分线的判定与一条线段两个端点距离相等的点,在这条线段的垂直平分线上u应用格式:PA=PB,点P 在AB 的垂直平分线上PAB作用:判断一个点是否在线段的垂直平分线上.这些点能组成什么几何图形?你能再找一些到线段AB 两端点的距离相等的点吗?能找到多少个到线段AB 两端点距离相等的点?与A,B 的距离相等的点都在直线l上,所以直线l 可以看成
8、与A、B两点 的距离相等的所有点的集合.PABClu应用格式:AB=AC,MB=MC,直线AM 是线段BC 的垂直 平分线A B C D M 这是判断一条直线是线段的垂直平分线的方法.典例精析典例精析例1 尺规作图:经过已知直线外一点作这条直线的垂线.ABCDEK已知:直线AB和AB外一点C.求作:AB的垂线,使它经过点C.作法:(1)任意取一点K,使点K和和点C在AB的两旁.(2)以点C 为圆心,CK长为半径作弧,交AB于点D和点E.(4)作直线CF.直线CF就是所求作的垂线.(3)分别以点D和点E为圆心,大于 DE的长为半径作弧,两弧相交于点F.12F例2 已知:如图,点E是AOB的平分线
9、上一点,ECOA,EDOB,垂足分别为C,D,连接,连接CD.求证:OE是CD的垂直平分线.ABOEDC证明:OE平分AOB,ECOA,EDOB,DE=CE(角平分线上的点到角的两边的距离相等).OE是CD的垂直平分线.当堂练习当堂练习1.如图所示,AC=AD,BC=BD,则下列说法正确的是()AAB垂直平分CD;B CD垂直平分AB;CAB与CD互相垂直平分;DCD平分 ACB 2.已知线段AB,在平面上找到三个点D、E、F,使DADB,EAEB,FAFB,这样的点的组合共有种.A无数3.下列说法:若点P、E是线段AB的垂直平分线上两点,则EAEB,PAPB;若PAPB,EAEB,则直线PE
10、垂直平分线段AB;若PAPB,则点P必是线段AB的垂直平分线上的点;若EAEB,则经过点E的直线垂直平分线段AB其中正确的有 (填序号).4.在锐角三角形ABC内一点P,,满足PA=PB=PC,则点P是ABC ()A.三条角平分线的交点B.三条中线的交点C.三条高的交点D.三边垂直平分线的交点DEPABCDFPA=PB=PC5.如图,ABC中,AB=AC,AB的垂直平分线交AC于E,连接BE,AB+BC=16cm,则BCE的周长是 cm.ABCDE16课堂小结课堂小结线段的垂直平分的性质和判定性 质到线段的两个端点距离相等的点在线段的垂直平分线上 内 容判 定内 容作 用线段的垂直平分线上的点
11、到线段的两个端点的距离相等 作 用见垂直平分线,得线段相等判断一个点是否在线段的垂直平分线上13.1.2 线段的垂直平分线的性质第十三章 轴对称第第2 2课时课时 线段垂直平分线的有关作图线段垂直平分线的有关作图导入新课导入新课情境引入 如图,A,B是路边两个新建小区,要在公路边增设一个公共汽车站,使两个小区到车站的路程一样长,该公共汽车站应建在什么地方?AB讲授新课讲授新课线段垂直平分线的画法一提出问题不折叠图形,你能准确地作出轴对称图形的对称轴吗?有时我们感觉两个平面图形是轴对称的,如何验证呢?ABCA B C 尺规作图 如图,点A和点B关于某条直线成轴对称,你能作出这条直线吗?AB分析:
12、我们只要连接点A和点B,作出线段AB的垂直平分线,就可得到点A和点B的对称轴.为此作出到点A,B的距离相等的两点,即线段AB的垂直平分线上的两点,从而作出线段AB的垂直平分线.尺规作图如图,点A和点B关于某条直线成轴对称,你能作出这条直线吗?ABCD作法:(1)分别以点A,B为圆心,以大于于 AB的长为半径作弧,两弧交于C,D两点.12(2)作直线CD.CD即为所求.特别说明:这个作法实际上就是线段垂直平分线的尺规作图,我们也可以用这种方法确定线段的中点.典例精析引例 如图,A,B是路边两个新建小区,要在公路边增设一个公共汽车站.使两个小区到车站的路程一样长,该公共汽车站应建在什么地方?AB分
13、析:增设的公共汽车站要满足到两个小区的路程一样长,应在线段AB的垂直平分线上,又要在公路边上,所以找到AB垂直平分线与公路的交点便是.公共汽车站当堂练习当堂练习1.如图,ABC和ABC关于直线l对称,请用无刻度的直尺作出它们的对称轴.ABCA B C l相关链接:成轴对称的两个图形对称点连线段(或延长线)相交,交点必定在对称轴上.2.下图中的五角星有几条对称轴?作出这些对称轴 AB作法:(1)找出五角星的一对对应点A和B,连接AB(2)作出线段AB的垂直平分线l则l就是这个五角星的一条对称轴 l用同样的方法,可以找出五条对称轴,所以五角星有五条对称轴 3.如图,八(1)班与八(2)班两个班的学
14、生分别在M、N两处参加植树劳动,现要在道路AB、AC的交叉区域内设一个茶水供应点P,使P到两条道路的距离相等,且PM=PN,请你用折纸的方法找出P点点并说明理由.MNBAPC课堂小结课堂小结线段的垂直平分线的有关作图尺规作图作对称轴的常 见 方 法属于基本作图之一,必须熟熟练掌握(1)将图形对折;(2)用尺规作图;(3)用刻度尺先取一对对称点连线的中点,然后作垂线13.2 画轴对称图形第十三章 轴对称第第1 1课时课时 画轴对称图形画轴对称图形导入新课导入新课问题引入 我们前面学习了轴对称图形以及轴对称图形的一些相关的性质.如果有一个图形和一条直线,如何画出这个图形关于这条直线对称的图形呢?这
15、节课我们一起来学习作轴对称图形的方法.讲授新课讲授新课轴对称图形的画法一 在一张半透明纸的左边部分,画一只左脚印,把这张纸对折后描图,打开对折的纸,就能得到相应的右脚印,这时,右脚印和左脚印成轴对称,折痕所在直线就是它们的对称轴,并且连接任意一对对应点得到的线段被对称轴垂直平分.类似地,请你再将一个图形做一做,看看能否得到同样的结论.(1)认真观察,左脚印和右脚印有什么关系?(2)对称轴是折痕所在的直线,即直线l,它与图中的线段PP 是什么关系?(成轴对称)(直线l垂直平分线段PP)PP 由一个平面图形可以得到与它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全相同;新图形上的每一点
16、都是原图形上的某一点关于直线l的对称点;连接任意一对对应点的线段被对称轴垂直平分.知识要点想一想:如何画一个点的对称图形?例1 画出点A关于直线l的对称点A.lAAO作法:(1)过点A作l的垂线,垂足为点O.(2)在垂线上截取OAOA.点A就是点A关于直线l的对称点.想一想:如何画一条直线的对称图形?例2 已知线段AB,画出AB关于直线l的对称线段.AB(图1)(图2)(图3)ABllABlA A A B(B)B 想一想:如果有一个图形和一条直线,如何画出与这个图形关于这条直线对称的图形呢?例3 如图,已知ABC和直线l,作出与ABC关于直线l对称的图形.lABC分析:ABC可以由三个顶点的位
17、置确定,只要能分别画出这三个顶点关于直线l的对称点,连接这些对称点,就能得到要画的图形.例3 如图,已知ABC和直线l,作出与ABC关于直线l对称的图形.作法:(1)过点A画直线l的垂线,垂足为点O,在垂线上截取OA=OA,A就是点A关于直线l的对称点.(3)连接AB,BC,CA,得到 ABC即为所求.(2)同理,分别画出点B,C关于直线l的对称点B,C.lABCABCO方法归纳作轴对称图形的方法 几何图形都可以看作由点组成.对于某些图形,只要作出图形中一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.当堂练习当堂练习1.如图,把下列图形补成关于直线l的对称图形.
18、2.如图给出了一个图案的一半,其中的虚线 l 是这个图案的对称轴.整个图案是个什么形状?请准确地画出它的另一半.BACDEFGHl 3.如图,画ABC关于直线m的对称图形.mABC(A)C B 课堂小结课堂小结画轴对称图形作图原理作 图方 法对称轴是对称点连线段的垂直平分线.(1)找特征点;(2)作垂线;(3)截取等长;(4)依次连线.13.2 画轴对称图形第十三章 轴对称 第第2 2课时课时 用坐标表示轴对称用坐标表示轴对称 导入新课导入新课问题引入如图,是一幅老北京城的示意图,其中西直门和东直门是关于中轴线对称的.如果以天安门为原点,分别以长安街和中轴线为x轴和y轴建立平面直角坐标系.根据
19、如图所示的东直门的坐标,你能说出西直门的坐标吗?讲授新课讲授新课用坐标表示轴对称一 在平面直角坐标系中,画出以上列表中已知点及其关于坐标轴的对称点,并把它们的坐标填入表格中,看把每对对称点的坐标有怎样的规律.提出问题已知点已知点A(2,-3)B(-1,2)C(-6,-5)D(,1)E(4,0)关于x轴的对称点关于y轴的对称点12xyO已知点已知点A(2,-3)B(-1,2)C(-6,-5)D(,1)E(4,0)关于x轴的对称点12ABCDEA B C D E A(2,3)B(-1,-2)C(-6,5)D(,1)12E(4,0)再找几个点,分别画出它们的对称点,检验一下你发现的规律.xyO已知点
20、已知点A(2,-3)B(-1,2)C(-6,-5)D(,1)E(4,0)关于y轴的对称点12ABCDEA B C D E A(-2,-3)B(1,2)C(6,-5)D(,1)12E(-4,0)再找几个点,分别画出它们的对称点,检验一下你发现的规律规律归纳在平面直角坐标系中,关于x轴对称的点的横坐标 ,纵坐标 ;关于y轴对称的点横坐标 ,纵坐标 .即点(x,y)关于x轴对称的点的坐标为(,),点(x,y)关于y轴对称的点的坐标为(,).不变互为相反数互为相反数不变x -y-x y典例精析例1 如图,四边形ABCD的四个顶点的坐标分别为A(-5,1),B(-2,1),C(-2,5),D(-5,4)
21、,分别画出与四边形ABCD关于y轴和x轴对称的图形.xyABCDA B C D A B C D O对于这类问题,只要先求出已知图形中的一些特殊点(如多边形的顶点)的对应点的坐标,描出并连接这些点,就可以得到这个图形的轴对称图形.知识要点在坐标系中作已知图形的对称图形(一找二描三连)当堂练习当堂练习1.完成下表.已知点(2,-3)(-1,2)(-6,-5)(0,-1.6)(4,0)关于x轴的对称点关于y轴的对称点(-2,-3)(2,3)(-1,-2)(1,2)(6,-5)(-6,5)(0,-1.6)(0,1.6)(-4,0)(4,0)2.已知点P(2a+b,-3a)与点P(8,b+2).若点若点
22、P与点与点P关于关于x轴对称,则轴对称,则a=_,b=_.若点若点P与点与点P关于关于y轴对称,则轴对称,则a=_,b=_.246-203.已知ABC的三个顶点的坐标分别为A(-3,5),B(-4,1),C(-1,3),作出ABC关于y轴对称的图形.解:点A(-3,5),B(-4,1),C(-1,3),关于y轴对称点的坐标分别为A(3,5),B(4,1),C(1,3).依次连接A B,B C,C A,就得到ABC关于y轴对称的A B C.31425-2-4-1-301 2 3 4 5-4-3-2-1ACBB AC x y 能力提升:如图,分别作出点P,M,N关于直线x=1的对称点,你能发现它们
23、坐标之间分别有什么关系吗?31425-2-4-1-3012345-4-3-2-1P(-2,3)P(4,3)M(-1,1)M(3,1)N(-3,-2)N(5,-2)答:两个对称点的横坐标之和的平均数都等于1,即是它们的对称轴直线x=1.x=1x y 课堂小结课堂小结用坐标表示轴对称关于坐标轴对称的点的坐标特征在坐标系中作已知图形的对称图形关于x轴对称,横同纵反;关于y轴对称,横反纵同关键要明确点关于x轴、y轴对称点的坐标变化规律,然后正确描出对称点的位置13.3 等腰三角形第十三章 轴对称 第第1 1课时课时 等腰三角形的性质等腰三角形的性质 导入新课导入新课图片引入图中有些你熟悉的图形吗?它们
24、有什么共同特点?斜拉桥梁埃及金字塔体育观看台架讲授新课讲授新课等腰三角形的性质一实验探究剪一剪:如图,把一张长方形的纸按图中的红线对折,并剪去阴影部分(一个直角三角形),再把得到的直角三角形展开,得到的三角形ABC有什么特点?ABCu定义及相关概念有两条边相等的三角形叫做等腰三角形.等腰三角形中,相等的两边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.ACB腰腰腰腰底边底边顶角顶角底角底角底角底角找一找:剪出的等腰三角形是轴对称图形吗?把剪出的等腰三角形ABC沿折痕对折,找出其中重合的线段和角.重合的线段重合的角 AC B D AB与与AC BD与与CD AD与与AD B
25、 与与C.BAD 与与CADADB 与与ADC等腰三角形是轴对称图形.猜一猜:由这些重合的线段和角,你能发现等腰三角形的性质吗?说一说你的猜想.性质1 等腰三角形的两个底角相等(等边对等角等边对等角).ABCD猜想与验证已知:ABC 中,AB=AC,求证:B=C .证明:证法1:作底边BC边上的中线AD.在ABD与ACD中:AB=AC(已知),BD=DC(作图),AD=AD(公共边),ABDACD(SSS).B=C(全等三角形对应角相等).应用格式:AB=AC(已知)B=C(等边对等角)证法欣赏证法2:作顶角BAC的平分线AD,交BC于点D.AD平分BAC,12.在ABD与ACD中,ABAC(
展开阅读全文