理论力学教学材料-12振动课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《理论力学教学材料-12振动课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 理论 力学 教学 材料 12 振动 课件
- 资源描述:
-
1、12 振动是日常生活和工程实际中常见的现象。例如:钟摆的往复摆动,汽车行驶时的颠簸,电动机、机床等工作时的振动,以及地震时引起的建筑物的振动等。利利:振动给料机 弊弊:磨损,减少寿命,影响强度 振动筛 引起噪声,影响劳动条件 振动沉拔桩机等 消耗能量,降低精度等。3.研究振动的目的研究振动的目的:消除或减小有害的振动,充分利用振动 为人类服务。2.振动的利弊振动的利弊:1.所谓振动就是系统在平衡位置附近作往复运动。振动就是系统在平衡位置附近作往复运动。3 4.振动的分类振动的分类:单自由度系统的振动 按振动系统的自由度分类按振动系统的自由度分类 多自由度系统的振动 弹性体的振动 按振动产生的原
2、因分类按振动产生的原因分类:自由振动:无阻尼的自由振动 有阻尼的自由振动(衰减振动)强迫振动:无阻尼的强迫振动 有阻尼的强迫振动 自激振动4 实际中的振动往往很复杂,为了便于研究,需简化为力学模型。质量弹簧系统振体5 运动过程中,使物体回到平衡位置的力称为恢复力恢复力6 12-1单自由度系统无阻尼自由振动单自由度系统无阻尼自由振动 一、振动的微分方程一、振动的微分方程:只需用一个独立坐标就可确定振体的位置,这种系统称为单自由度系统单自由度系统。物体受到初干扰后,仅在恢复力作用下的振动称为无阻尼自由振动无阻尼自由振动图示质量弹簧系统,以平衡位置为坐标原点,则xmFmg)(stxkFststkmg
3、变形:振体静止平衡时弹簧的7 kxxkmgFmgxmst)(mkn2令02xxn 则:这就是质量弹簧系统无阻尼自由振动的微分方程。)/(0 22lgnn 对于其他类型,同理可得。如单摆:单摆:8 复摆:复摆:)/(0 22Jmgann 对于任何一个单自由度系统,以 q 为广义坐标(从平衡位置开始量取),则自由振动的微分方程的标准形式:则自由振动的微分方程的标准形式:02qqn 解解为:)sin(tAqn)cos(tAqnn9 0022020arctg ,qqqqAnn设 t=0 时,代入上两式得:00 ,qqqq 或:tCtCqnnsincos21C1,C2由初始条件决定为nq CqC/,02
4、 01tqtqqnnnsincos 0010n 圆频率,振体在2秒内振动的次数。n=2f n、f 都称为系统的固有频率或自然频率A振体离开平衡位置的最大位移,称为振幅n t+相位,决定振体在某瞬时 t 的位置 初相位,决定振体运动的起始位置nT2T 周期,每振动一次所经历的时间f 频率,每秒钟振动的次数,单位:HZ ,f=1/T11 无阻尼自由振动的特点无阻尼自由振动的特点:(2)振幅A和初相位 取决于运动的初始条件(初位移和初速度);(1)振动规律为简谐振动;(3)周期T 和固有频率n 仅决定于系统本身的固有参数(m,k,J)。四、其它四、其它 1.如果系统在振动方向上受到某个常力的作用,该
5、常力只影响静平衡点O的位置,而不影响系统的振动规律,如振动频率、振幅和相位等。12 2.弹簧并联系统和弹簧串联系统的等效刚度212121212211 ,)(,kkkkkmgkkmgFFmgkFkFeqststst并联2121eq21212121k )11()11(kkkkkkmgkmgkkmgkmgkmgeqstststst串联并联串联13 二、二、求系统固有频率的方法求系统固有频率的方法st弹簧在全部重力作用下的静变形对于质量弹簧这类系统,当振体静止平衡时,有:stkmgstng于是:无阻尼自由振动系统为保守系统,机械能守恒。当振体运动到距静平衡位置最远时,速度为零,即系统动能等于零,势能达
6、到最大值(取系统的静平衡位置为零势能点)。14 当振体运动到静平衡位置时,系统的势能为零,动能达到最大值。mgAAkVstst)(2122max2max21 kAVmgkst222maxmax2121nmAxmT如:)sin(tAxn设mkkAmAVTnn 2121 222maxmax得由由Tmax=Vmax求n的方法称为能量法。151.振动微分方程的标准形式振动微分方程的标准形式2.静变形法:静变形法:3.能量法能量法:综上所述,求系统固有频率的方法有:综上所述,求系统固有频率的方法有:02qqn stngst:集中质量在全部重力 作用下的静变形n由Tmax=Vmax,求出 能量法是从机械能
7、守恒定律出发,对于计算较复杂的振动系统的固有频率,用能量法来求更为简便。16 例例1 图示系统。设轮子无侧向摆动,且轮子与绳子间无滑动,不计绳子和弹簧的质量,轮子是均质的,半径为R,质量为M,重物质量 m,试列出系统微幅振动微分方程,求出其固有频率。17 解解:以 x 为广义坐标,静平衡位置为 坐标原点。02)(,0)(RkgRmMFmstIgkmMst2在任意位置x 时:kxgmMxkFst22)2(静平衡时:18 应用动量矩定理x:kxRRFgRmMFmxRmMRxMRRxMRxmHII42)()()23(212由 ,有)(FmdtdHIIkxRxRmM4)23(振动微分方程:固有频率:m
8、MkxmMkxn2380238 19 解解2:用机械能守恒定律 以x为广义坐标(取静平衡位置为原点)22222)23(21 21)(22121xmMxmRxMRxMT 以平衡位置为计算势能的零位置,并注意轮心位移x时,弹簧伸长2xgxmMxkkxgxmMxkVststst)(22 )()2(2222因平衡时gxmMxkst)(222kxV 20 由 T+V=有:constconstkxxmM222)23(21mMkxmMkxn2380238 对时间 t 求导,再消去 ,得x 21 例例2 鼓轮:质量M,对轮心回转半径,在水平面上只滚不滑,大轮半径R,小轮半径 r,弹簧刚度 ,重物E质量为m,不
9、计轮D和弹簧质量,且绳索不可伸长。求系统微振动的固有频率。21,kk 解解:取静平衡位置O为坐标原点,取C偏离平衡位置x为广义坐标。系统的最大动能为:22 )()()(21 )(21212max21max22max21maxRkkrRmgxkkxRrRmgxkkVststst2max22222max2max22maxmax 21 )(21 )(21)(21xr)m(R)RM(RxRrRmRxMxMT以平衡位置为重力及弹性势能零位置,则:23 设 则有)sin(nAxnAxAxmaxmax ,)(21 2)()(221max222222maxAkkVARrRmRMTn根据Tmax=Vmax,解得
10、222221)()()(rRmRMRkkn24 12-2 单自由度系统的有阻尼自由振动单自由度系统的有阻尼自由振动一、阻尼的概念一、阻尼的概念:阻尼阻尼:振动过程中,系统所受的阻力。粘性阻尼粘性阻尼:在很多情况下,振体速度不大时,介质粘性引起的阻尼力与速度的一次方成正比,这种阻尼称为粘性阻尼。vR投影式:xRx 粘性阻尼系数,简称阻尼系数。自由振动是简谐运动,振幅不随时间而变。但实际中振动的振幅几乎都是随时间逐渐减小的(也称为衰减振动),这是因为有阻尼。25 二、振动微分方程及其解二、振动微分方程及其解:质量弹簧系统存在粘性阻尼:xkxxm 有阻尼自由振动微分方程的标准形式。02 2 ,22n
展开阅读全文