2020-2021学年新教材高中数学51导数的概念及其意义512导数的概念及其几何意义课件新人教A版选择性必修二.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2020-2021学年新教材高中数学51导数的概念及其意义512导数的概念及其几何意义课件新人教A版选择性必修二.pptx》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020 _2021 学年 新教材 高中数学 51 导数 概念 及其 意义 512 几何 课件 新人 选择性 必修 下载 _选择性必修 第二册_人教A版(2019)_数学_高中
- 资源描述:
-
1、5.1.2导数的概念及其几何意义激趣诱思知识点拨跳水运动员的跳台距水面高度分为5米、7.5米和10米3种,奥运会、世界锦标赛等限用10米跳台.跳台跳水根据起跳方向和动作结构分向前、向后、向内、反身、转体和臂立6组.比赛时,男子要完成 4个有难度系数限制的自选动作和6个无难度系数限制的自选动作,女子要完成4 个有难度系数限制的自选动作和4个无难度系数限制的自选动作.每个动作的最高得分为 10分,以全部动作完成后的得分总和评定成绩.如下图,若表示跳水运动中运动员的重心相对于水面的高度随时间变化的函数h(t)=-4.9t2+4.8t+11的图象,根据图象,请描述比较曲线h(t)在t=t0,t1,t2
2、附近的变化情况.激趣诱思知识点拨一、函数的平均变化率对于函数y=f(x),设自变量x从x0变化到x0+x,相应地,函数值y就从f(x0)变化到f(x0+x).这时,x的变化量x,y的变化量为y=f(x0+x)-f(x0).叫做函数y=f(x)从x0到x0+x的平均变化率.名师点析1.x是自变量的变化量,它可以为正,也可以为负,但不能等于零,而y是相应函数值的变化量,它可以为正,可以为负,也可以等于零.2.函数平均变化率的物理意义:如果物体的运动规律是s=s(t),那么函数s(t)在t到t+t这段时间内的平均变化率就是物体在这段时间内的平均速率,即激趣诱思知识点拨微练习(1)函数f(x)=8x-
3、6在m,n上的平均变化率为.答案:8 答案:C 激趣诱思知识点拨二、导数的概念 名师点析对于导数的概念,注意以下几点:(1)函数应在点x0的附近有定义,否则导数不存在;(2)导数是一个局部概念,它只与函数y=f(x)在x=x0及其附近的函数值有关,与x无关;(3)导数的实质是一个极限值.激趣诱思知识点拨微思考x,y的值一定是正值吗?平均变化率是否一定为正值?提示:x,y可正可负,y也可以为零,但x不能为零.平均变化率 可正、可负、可为零.微练习利用导数定义求函数f(x)=3x-2在x=5处的导数值.激趣诱思知识点拨三、导数的几何意义如图,在曲线y=f(x)上任取一点P(x,f(x),如果当点P
4、(x,f(x)沿着曲线y=f(x)无限趋近于点P0(x0,f(x0)时,割线P0P无限趋近于一个确定的位置,这个确定位置的直线P0T称为曲线y=f(x)在点P0处的切线.则割线P0P的斜率激趣诱思知识点拨记x=x-x0,当点P沿着曲线y=f(x)无限趋近于点P0时,即当x0时,k无限趋近于函数y=f(x)在x=x0处的导数.因此,函数f(x)在x=x0处的导数f(x0)就是切线P0T的斜率k0,即这就是导数的几何意义.激趣诱思知识点拨微练习若函数f(x)在x=3处的导数f(3)=,则曲线f(x)在(3,f(3)处的切线的倾斜角=.答案:60 激趣诱思知识点拨微思考(1)如何求曲线f(x)在点(
5、x0,f(x0)处的切线方程?提示:根据导数的几何意义,求出函数y=f(x)在点(x0,f(x0)处的导数,即曲线在该点处的切线的斜率,再由直线方程的点斜式求出切线方程.(2)曲线f(x)在点(x0,f(x0)处的切线与曲线过点(x0,y0)的切线有什么不同?提示:曲线f(x)在点(x0,f(x0)处的切线,点(x0,f(x0)一定是切点,只要求出k=f(x0),利用点斜式写出切线方程即可;而曲线f(x)过某点(x0,y0)的切线,给出的点(x0,y0)不一定在曲线上,即使在曲线上也不一定是切点.激趣诱思知识点拨(3)曲线在某点处的切线是否与曲线只有一个交点?提示:不一定.曲线y=f(x)在点
6、P(x0,f(x0)处的切线l与曲线y=f(x)的交点个数不一定只有一个,如图所示.激趣诱思知识点拨四、导函数对于函数y=f(x),当x=x0时,f(x0)是一个确定的数.当x变化时,y=f(x)就是x的函数,我们称它为f(x)的导函数(简称导数).y=f(x)的导函数有时也记作y,即名师点析导数与导函数之间既有区别又有联系,导数是对一个点而言的,它是一个确定的值,与给定的函数及x(或x0)的位置有关,而与x无关;导函数是对一个区间而言的,它是一个确定的函数,依赖于函数本身,也与x无关.激趣诱思知识点拨微练习 探究一探究二探究三探究四素养形成当堂检测求函数的平均变化率求函数的平均变化率例1已知
展开阅读全文
链接地址:https://www.163wenku.com/p-4339074.html