高中数学:2章习题课-数列求和课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高中数学:2章习题课-数列求和课件.pptx》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 习题 数列 求和 课件 下载 _其他_数学_高中
- 资源描述:
-
1、习题课数列求和一、裂项相消法求和(2)将数列中的每一项转化为两项之差的形式,通过正负项相互抵消求得数列的和.2.填空:(1)裂项相消法就是把数列的各项变为两项之差,使得相加求和时一些正负项相互抵消,前n项和变成首尾若干项之和,从而求出数列的前n项和.(2)常用的一些裂项技巧:3.做一做:(1)判断正误.答案:二、分组求和法 提示:不是等差数列,也不是等比数列.它们的每一项是由一个等差数列和一个等比数列的各项相加减得到的.2.填空:分组求和法:如果一个数列的各项是由若干个等差数列和等比数列的项相加减得到的,那么可以把数列的每一项分成多个项或把数列的项重新组合,使其分别构成等差数列或等比数列,然后
2、利用等差、等比数列的求和公式求解.3.做一做:数列n+2n的前n项和Sn等于.解析:三、并项转化法求和1.思考:给出数列:1,-3,5,-7,9,-11,该数列是等差数列吗?该数列中各项的符号有什么特点?如果将该数列依次两项两项分段相加,得到的新数列是什么数列?提示:该数列不是等差数列;该数列各项的符号正负交替;将该数列依次两项两项分段相加,得到的新数列为-2,-2,-2,-2,它是一个常数列.2.填空:并项转化法:在求数列的前n项和时,如果一个数列的项是正负交错的,尤其是当各项的绝对值又构成等差数列时,可以依次两项两项(或几项几项)合并,再利用其他相关的方法进行求和.3.做一做:(1)对于数
3、列1,-3,5,-7,9,-11,其前100项的和等于.答案:-100(2)若数列an的通项公式an=(-1)n2n,前n项和为Sn,则S10=,S15=.解析:S10=(-2)+4+(-6)+8+(-18)+20=25=10,S15=(-2)+4+(-6)+8+28+(-30)=27-30=-16答案:10-16探究一探究二探究三探究四规范解答当堂检测裂项相消法求和裂项相消法求和 探究一探究二探究三探究四规范解答当堂检测反思感悟裂项法的实质是将数列中的每项(通项)分解,相加使之能消去一些项,最终达到求和的目的.利用裂项法的关键是分析数列的通项,考察其是否能分解成两项的差,且这两项一定要是同一
4、数列相邻(相间)的两项.在裂项求和的过程中,还要注意以下几点:(1)在通项裂开后,原各项是否恰好等于相应的两项之差.(2)在正负项抵消后,是否只剩下了第一项和最后一项,还有可能前面剩下了两项(或多项),后面也剩下了两项(或多项).探究一探究二探究三探究四规范解答当堂检测探究一探究二探究三探究四规范解答当堂检测分组求和法求和分组求和法求和例2已知数列cn的首项c1=3,cn=2np+nq(nN*,p,q为常数),且c1,c4,c5成等差数列,求:(1)p,q的值;(2)数列cn的前n项和Sn.分析:先将c1,c4,c5用p,q表示,根据c1,c4,c5成等差数列建立关于p,q的方程组,即可求得p
5、,q的值,从而得到数列的通项公式,这时每一项都是由一个等比数列和一个等差数列中的项的和构成,可分别求和后再相加.解:(1)由c1=3,得2p+q=3.因为c4=24p+4q,c5=25p+5q,且c1+c5=2c4,所以3+25p+5q=25p+8q,解得p=1,q=1.探究一探究二探究三探究四规范解答当堂检测反思感悟当一个数列本身不是等差数列也不是等比数列,但如果它的通项公式可以拆分为几项的和,而这些项又构成等差数列或等比数列,那么就可以用分组求和法,即原数列的前n项和等于拆分成的每个数列前n项和的和.探究一探究二探究三探究四规范解答当堂检测探究一探究二探究三探究四规范解答当堂检测并项转化法
展开阅读全文