《数学活动—平面镶嵌》名师课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《《数学活动—平面镶嵌》名师课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学活动平面镶嵌 数学 活动 平面 镶嵌 名师 课件
- 资源描述:
-
1、数学活动平面镶嵌名师课件(2)三角形的内角和为_,四边形的内角和为_,n边形的内角和_.(1)正三角形的一个内角度数为_,正方形的一个内角度数为_,正五边形的一个内角度数为_,正六边形的一个内角度数为_,正八边形的一个内角度数为 _,正十二边形的一个内角度数为_.60 90 120 135 150 108 180 360(n-2)180探究一:探究平面镶嵌的含义活动1正多边形的每个内角度数正三角形 正六边形 正四边形 正八边形 正五边形 正十二边形 回顾旧知,回忆正多边形的每个内角度数活动2(1)问题一:回想你家客厅(卧室)里的地砖、地板铺设情况,并说说是用什么形状的地砖、地板铺成的?NoIm
2、age整合旧知,探究平面镶嵌的概念(2)展示实物:拼图图片和生活中瓷砖的图片探究一:探究平面镶嵌的含义(3)问题二:你发现它们有哪些共同特征?用地砖铺地,用瓷砖贴墙,都要求砖与砖严丝合缝,不留空隙,把地面或墙面全部覆盖.从数学角度去分析,这些工作就是用一些不重叠摆放的多边形把平面一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌)的问题.探究一:探究平面镶嵌的含义重点知识探究二:探究一种多边形单独镶嵌的条件 活动1全班分组活动,拿出课前准备好的正三角形、正四边形、正五边形、正六边形纸片,进行镶嵌,看哪个小组拼的又快又好,然后展示他们的成果.大胆操作,动手实验,探究新知识从拼图中,我
3、们可以得出结论:正三角形、正四边形、正六边形能够镶嵌,而正五边形不能.问题三:为什么正五边形不能镶嵌,其它的三种正多边形可以镶嵌?这其中有什么规律?结合刚才的活动填写表格,寻找规律.活动2名称每个内角的度数使用正多边形的个数在一个顶点处的度数和能否镶嵌正三角形正四边形正五边形正六边形集思广益、小组讨论、寻找规律 探究二:探究一种多边形单独镶嵌的条件 如果一个正多边形可以进行镶嵌,那么内角一定是360的约数(或360一定是这个多边形内角的整数倍).名称每个内角的度数使用正多边形的个数在一个顶点处的度数和能否镶嵌正三角形606360能正四边形904360能正五边形108/不能正六边形1203360
展开阅读全文