数学建模最优化模型课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《数学建模最优化模型课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 建模 优化 模型 课件
- 资源描述:
-
1、最优化模型最优化模型一、最优化方法概述一、最优化方法概述二、无约束最优化问题二、无约束最优化问题三、无约束最优化问题的三、无约束最优化问题的MATLABMATLAB求解求解四、有约束最优化问题四、有约束最优化问题a最优化方法概述最优化方法概述 1 1、最优化理论和方法是近二十多年来发展十分迅、最优化理论和方法是近二十多年来发展十分迅速的一个数学分支。速的一个数学分支。2 2、在数学上,最优化是一种求极值的方法。、在数学上,最优化是一种求极值的方法。3 3、最优化已经广泛的渗透到工程、经济、电子技、最优化已经广泛的渗透到工程、经济、电子技术等领域。术等领域。a 在实际生活当中,人们做任何事情,不
2、管是分在实际生活当中,人们做任何事情,不管是分析问题,还是进行决策,都要用一种标准衡量析问题,还是进行决策,都要用一种标准衡量一下是否达到了最优。一下是否达到了最优。(比如基金人投资)(比如基金人投资)在各种科学问题、工程问题、生产管理、社会在各种科学问题、工程问题、生产管理、社会经济问题中,人们总是希望在有限的资源条件经济问题中,人们总是希望在有限的资源条件下,用尽可能小的代价,获得最大的收获。下,用尽可能小的代价,获得最大的收获。(比如保险)(比如保险)a 数学家对最优化问题的研究已经有很多年的数学家对最优化问题的研究已经有很多年的历史。历史。以前解决最优化问题的数学方法只限于古典以前解决
3、最优化问题的数学方法只限于古典求导方法和变分法(求求导方法和变分法(求无约束极值无约束极值问题),拉格问题),拉格朗日(朗日(LagrangeLagrange)乘数法解决等式约束下的条件)乘数法解决等式约束下的条件极值问题。极值问题。计算机技术的出现,使得数学家研究出了许计算机技术的出现,使得数学家研究出了许多最优化方法和算法用以解决以前难以解决的问多最优化方法和算法用以解决以前难以解决的问题。题。a几个概念几个概念 最优化最优化是从所有可能方案中选择最合理的一种是从所有可能方案中选择最合理的一种以达到最优目标的学科。以达到最优目标的学科。最优方案最优方案是达到最优目标的方案。是达到最优目标的
4、方案。最优化方法最优化方法是搜寻最优方案的方法。是搜寻最优方案的方法。最优化理论最优化理论就是最优化方法的理论。就是最优化方法的理论。a经典极值问题经典极值问题包括:包括:无约束极值问题无约束极值问题约束条件下的极值问题约束条件下的极值问题a1 1、无约束极值问题的数学模型、无约束极值问题的数学模型 min()xf x2 2、约束条件下极值问题的数学模型、约束条件下极值问题的数学模型 min()xf x.()0,1,2,.,()0,1,2,.,iistg ximh xin 其中,极大值问题可以转化为极小值问题来其中,极大值问题可以转化为极小值问题来进行求解。如求:进行求解。如求:max()xf
5、 x 可以转化为:可以转化为:min()xf xa1 1、无约束极值问题的求解、无约束极值问题的求解 例例1:求函数:求函数y=2x3+3x2-12x+14在区间在区间-3,4上的最上的最大值与最小值。大值与最小值。解:令解:令f(x)=y=2x3+3x2-12x+14 f(x)=6x2+6x-12=6(x+2)(x-1)解方程解方程f(x)=0,得到,得到x1=-2,x2=1,又,又由于由于f(-3)=23,f(-2)=34,f(1)=7,f(4)=142,综上得,综上得,函数函数f(x)在在x=4取得在取得在-3,4上得最大值上得最大值f(4)=142,在,在x=1处取得在处取得在-3,4
6、上取得最小值上取得最小值f(1)=7 aa用用MATLAB解无约束优化问题解无约束优化问题 其中等式(其中等式(3)、()、(4)、()、(5)的右边可选用()的右边可选用(1)或()或(2)的等式右边的等式右边.函数函数fminbnd的算法基于黄金分割法和二次插值法,它要求的算法基于黄金分割法和二次插值法,它要求目标函数必须是连续函数,并可能只给出局部最优解目标函数必须是连续函数,并可能只给出局部最优解.常用格式如下:常用格式如下:(1)x=fminbnd(fun,x1,x2)(2)x=fminbnd(fun,x1,x2,options)(3)x,fval=fminbnd()(4)x,fva
7、l,exitflag=fminbnd()(5)x,fval,exitflag,output=fminbnd()aMATLAB(wliti1)主程序为主程序为wliti1.m:f=2*exp(-x).*sin(x);fplot(f,0,8);%作图语句作图语句 xmin,ymin=fminbnd(f,0,8)f1=-2*exp(-x).*sin(x);xmax,ymax=fminbnd(f1,0,8)a例例2 有边长为有边长为3m的正方形铁板,在四个角剪去相等的正方形以的正方形铁板,在四个角剪去相等的正方形以制成方形无盖水槽,问如何剪法使水槽的容积最大?制成方形无盖水槽,问如何剪法使水槽的容积最
8、大?解解先编写先编写M文件文件fun0.m如下如下:function f=fun0(x)f=-(3-2*x).2*x;主程序为主程序为wliti2.m:x,fval=fminbnd(fun0,0,1.5);xmax=x fmax=-fval运算结果为运算结果为:xmax=0.5000,fmax=2.0000.即剪掉的正方形的边即剪掉的正方形的边长为长为0.5m时水槽的容积最大时水槽的容积最大,最大容积为最大容积为2m3.MATLAB(wliti2)a 命令格式为命令格式为:(1)x=fminunc(fun,X0);或);或x=fminsearch(fun,X0)(2)x=fminunc(fun
9、,X0,options););或或x=fminsearch(fun,X0,options)(3)x,fval=fminunc(.););或或x,fval=fminsearch(.)(4)x,fval,exitflag=fminunc(.););或或x,fval,exitflag=fminsearch(5)x,fval,exitflag,output=fminunc(.););或或x,fval,exitflag,output=fminsearch(.)2.多元函数无约束优化问题多元函数无约束优化问题标准型为:标准型为:min()F Xa例例 用用fminsearch函数求解函数求解输入命令输入命
10、令:f=100*(x(2)-x(1)2)2+(1-x(1)2;x,fval,exitflag,output=fminsearch(f,-1.2 2)运行结果运行结果:x=1.0000 1.0000fval=1.9151e-010exitflag=1output=iterations:108 funcCount:202 algorthm:Nelder-Mead simplex direct search a有约束最优化有约束最优化最优化方法分类最优化方法分类(一)(一)线性最优化线性最优化:目标函数和约束条件都是线:目标函数和约束条件都是线性的则称为线性最优化。性的则称为线性最优化。非线性最优化
11、非线性最优化:目标函数和约束条件如果含:目标函数和约束条件如果含有非线性的,则称为非线性最优化。有非线性的,则称为非线性最优化。(二)(二)静态最优化静态最优化:如果可能的方案与时间无关,:如果可能的方案与时间无关,则是静态最优化问题。则是静态最优化问题。动态最优化动态最优化:如果可能的方案与时间有关,如果可能的方案与时间有关,则是动态最优化问题则是动态最优化问题a有约束最优化问题的数学建模有约束最优化问题的数学建模 有约束最优化模型一般具有以下形式:有约束最优化模型一般具有以下形式:min().xf xst或或max().xf xst 其中其中f(x)为目标函数,省略号表示约束式子,可以是为
12、目标函数,省略号表示约束式子,可以是等式约束,也可以是不等式约束。等式约束,也可以是不等式约束。a 根据目标函数,约束条件的特点将最优根据目标函数,约束条件的特点将最优化方法包含的主要内容大致如下划分:化方法包含的主要内容大致如下划分:线性规划线性规划整数规划整数规划非线性规划非线性规划动态规划动态规划多目标规划多目标规划 对策论对策论最优化方法主要内容最优化方法主要内容a问题一问题一:某工厂在计划期内要安排生产:某工厂在计划期内要安排生产I、II两种产品,两种产品,已知生产单位产品所需的设备台时及已知生产单位产品所需的设备台时及A、B两种原材料的两种原材料的消耗,如下表所示消耗,如下表所示
13、12kg40原材料原材料B16kg04原材料原材料A8台时台时21设备设备III该工厂每生产一件产品该工厂每生产一件产品I可获利可获利2元,每生产一件产品元,每生产一件产品II可获利可获利3元。问应如何安排计划使该工厂获利最多?元。问应如何安排计划使该工厂获利最多?a解解:该工厂生产产品:该工厂生产产品I x1件,生产产品件,生产产品II x2件,件,我们可建立如下数学模型:我们可建立如下数学模型:2132maxxxz0,12416482212121xxxxxxs.t.a问题二问题二:某厂每日某厂每日8小时的产量不低于小时的产量不低于1800件件.为了进行质量为了进行质量控制,计划聘请两种不同
14、水平的检验员控制,计划聘请两种不同水平的检验员.一级检验员的标准为:一级检验员的标准为:速度速度25件件/小时,正确率小时,正确率98%,计时工资,计时工资4元元/小时;二级检验员小时;二级检验员的标准为:速度的标准为:速度15件件/小时,正确率小时,正确率95%,计时工资,计时工资3元元/小时小时.检检验员每错检一次,工厂要损失验员每错检一次,工厂要损失2元元.为使总检验费用最省,该工为使总检验费用最省,该工厂应聘一级、二级检验员各几名?厂应聘一级、二级检验员各几名?解解 设需要一级和二级检验员的人数分别为设需要一级和二级检验员的人数分别为x1、x2人人,则应付检验员的工资为:则应付检验员的
15、工资为:212124323848xxxx因检验员错检而造成的损失为:因检验员错检而造成的损失为:21211282)%5158%2258(xxxxa故目标函数为:故目标函数为:2121213640)128()2432(minxxxxxxz约束条件为:约束条件为:0,18001582582121xxxxa 运用最优化方法解决最优化问题的一般运用最优化方法解决最优化问题的一般方法步骤如下:方法步骤如下:前期分析:分析问题,找出要解决的目标,约束条件,前期分析:分析问题,找出要解决的目标,约束条件,并确立最优化的目标。并确立最优化的目标。定义变量,建立最优化问题的数学模型,列出目标函定义变量,建立最优
16、化问题的数学模型,列出目标函数和约束条件。数和约束条件。针对建立的模型,选择合适的求解方法或数学软件。针对建立的模型,选择合适的求解方法或数学软件。编写程序,利用计算机求解。编写程序,利用计算机求解。对结果进行分析,讨论诸如:结果的合理性、正确性,对结果进行分析,讨论诸如:结果的合理性、正确性,算法的收敛性,模型的适用性和通用性,算法效率与算法的收敛性,模型的适用性和通用性,算法效率与误差等。误差等。a某豆腐店用黄豆制作两种不同口感的豆腐出售。制作口感较鲜嫩的豆腐每千克需要0.3千克一级黄豆及0.5千克二级黄豆,售价10元;制作口感较厚实的豆腐每千克需要0.4千克一级黄豆及0.2千克二级黄豆,
展开阅读全文