数学分析第十一章反常积分2课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《数学分析第十一章反常积分2课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学分析 第十一 反常 积分 课件
- 资源描述:
-
1、第十一章第十一章 反常积分反常积分 2 反常积分的收敛判别反常积分的收敛判别一、无穷限的广义积分的审敛法一、无穷限的广义积分的审敛法收敛收敛上有界,则广义积分上有界,则广义积分在在若函数若函数且且上连续,上连续,在区间在区间定理设函数定理设函数 axadxxfadttfxFxfaxf)(),)()(0)(),)(不通过被积函数的原函数判定广义积分收不通过被积函数的原函数判定广义积分收敛性的判定方法敛性的判定方法.由定理由定理1,对于非负函数的无穷限的广义积,对于非负函数的无穷限的广义积分有以下比较收敛原理分有以下比较收敛原理也发散也发散发散,则发散,则且且并并也收敛;如果也收敛;如果收敛,则收
2、敛,则并且并且上连续,如果上连续,如果区间区间在在、设函数设函数比较审敛原理比较审敛原理定理定理 aaaadxxfdxxgxaxfxgdxxfdxxgxaxgxfaxgxf)()(),()()(0)()(),()()(0),)()()(2证证.)()()()()()(0 ababaadxxgdxxgdxxfdxxgxgxfba收敛,得收敛,得及及,由,由设设上有上界上有上界在在即即),)()(adxxfbFba由定理知由定理知收敛收敛 adxxf)(.)(,)(),()(0必定发散必定发散则则发散发散且且如果如果 aadxxfdxxgxfxg也收,这与假设矛盾也收,这与假设矛盾收敛,由第一部分
3、知收敛,由第一部分知如果如果 aadxxgdxxf)()(例如,例如,时发散时发散当当时收敛;时收敛;当当广义积分广义积分11)0(Ppaxdxap发散发散则则,使得,使得常数常数收敛;如果存在收敛;如果存在则则,使得,使得及及存在常数存在常数如果如果上连续,且上连续,且在区间在区间设函数设函数比较审敛法比较审敛法定理定理 aapdxxfxaxNxfNdxxfxaxMxfpMxfaaxf)()()(0)(),()(10.0)()0(),)()(3 例例.1134的收敛性的收敛性判别广义积分判别广义积分 xdx解解,111103/43434xxx ,134 p根据比较审敛法,根据比较审敛法,.1
4、134收敛收敛广义积分广义积分 xdx发散发散则则或或如果如果收敛;收敛;存在,则存在,则使得使得,如果存在常数如果存在常数上连续,且上连续,且在区间在区间设函数设函数极限审敛法极限审敛法定理定理 axxapxdxxfxxfdxxfdxxfxfxpxfaaxf)(),)(lim(0)(lim)()(lim1.0)()0(),)()(4例例.112的收敛性的收敛性判别广义积分判别广义积分 xxdx解解,111lim22 xxxx所给广义积分收敛所给广义积分收敛例例.1122/3的收敛性的收敛性判别广义积分判别广义积分dxxx 解解2222/31lim1limxxxxxxxx ,根据极限审敛法,所
5、给广义积分发散根据极限审敛法,所给广义积分发散例例.arctan1的收敛性的收敛性判别广义积分判别广义积分dxxx 解解xxxxxxarctanlimarctanlim,2 根据极限审敛法,所给广义积分发散根据极限审敛法,所给广义积分发散也收敛也收敛收敛;则收敛;则如果如果上连续,上连续,在区间在区间设函数设函数定理定理 aadxxfdxxfaxf)()(),)(5证证).)()(21)(xfxfx 令令,)()(0)(xfxx ,且,且,)(收敛收敛dxxfa .)(也收敛也收敛dxxa ,)()(2)(xfxxf 但但,)()(2)(bababadxxfdxxdxxf.)()(2)(aaa
展开阅读全文