人教版高中数学必修一(全册)教学课件汇总.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《人教版高中数学必修一(全册)教学课件汇总.pptx》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 高中数学 必修 教学 课件 汇总 下载 _其他版本_数学_高中
- 资源描述:
-
1、一次小下载一次小下载 安逸一整年安逸一整年如果暂时不需要,请您一定如果暂时不需要,请您一定收藏收藏我哦!我哦!因为因为一旦关闭一旦关闭我,我,再搜索到我再搜索到我的机会的机会几乎为零几乎为零!请别问我是怎么知道的!几个要求 上课前要预习 上课时要认真关于作业自己整理问题集集合的有关概念集合的有关概念元素元素(element)-我们把研究的对象我们把研究的对象统称为元素统称为元素集合集合(set)-把一些元素组成的总体叫把一些元素组成的总体叫做集合做集合,简称集简称集.一般用大括号一般用大括号”表示集合表示集合,也常用也常用大写的拉丁字母大写的拉丁字母A、B、C表示集合表示集合.用小写的拉丁字母
2、用小写的拉丁字母a,b,c表示元素表示元素注注:组成集合的元素可以是物组成集合的元素可以是物,数数,图图,点等点等集合三集合三大特大特性:性:(2)互异性互异性:集合中的元素必须是互不相同集合中的元素必须是互不相同的。的。(1)确定性确定性:集合中的元素必须是确定集合中的元素必须是确定的的 (3)无序性无序性:集合中的元素是无先后顺序的集合中的元素是无先后顺序的 集合中的任何两个元素都可以交换位置集合中的任何两个元素都可以交换位置只要构成两个集合的元素是一样只要构成两个集合的元素是一样的,我们就称这两个集合是的,我们就称这两个集合是相等相等的的 判断以下元素的全体是否组成集合,并判断以下元素的
3、全体是否组成集合,并说明理由;说明理由;(1)大于大于3小于小于11的偶数;的偶数;(2)我国的小河流。我国的小河流。思考:思考:中国的直辖市中国的直辖市身材较高的人身材较高的人著名的数学家著名的数学家高一高一(5)班眼睛很近视的同学班眼睛很近视的同学判断下列例子能否构成集合判断下列例子能否构成集合注注:像像”很很”,”非常非常”,”比较比较”这些这些不确定不确定的词的词都不能构成集合都不能构成集合重要数集:重要数集:(1)N:自然数集自然数集(含含0)(2)N或或N:正整数集正整数集(不含不含0)(3)Z:整数集整数集(4)Q:有理数集有理数集(5)R:实数集实数集即非负整数集即非负整数集(
4、1)属于(belong to):如果a是集合A的元素,就说a属于A,记作aA(2)不属于(not belong to):如果a不是集合A的元素,就说a不属于A,记作元素对于集合的关系元素对于集合的关系Aa 用符号用符号“”或或“”填空:填空:(1)3.14_Q(1)3.14_Q (2)_Q (2)_Q (3)0_N (3)0_N (4)0_N+(4)0_N+(5)(-0.5)(5)(-0.5)0 0_Z _Z (6)2_R (6)2_R练一练:练一练:集合的分类集合的分类 有限集:含有限个元素的集合有限集:含有限个元素的集合 无限集:含无限个元素的集合无限集:含无限个元素的集合 空集:不含任何
5、元素的集合空集:不含任何元素的集合 集合的表示方法集合的表示方法 1 1、列举法:、列举法:将集合中的元素一一列举出来,并用花括号将集合中的元素一一列举出来,并用花括号 括起来的方法叫做列举法括起来的方法叫做列举法互异互异无序无序 例1用列举法表示下列集合:(1)小于10的所有自然数组成的集合;(2)方程x2=x的所有实数根组成的集合;(3)由120以内的所有质数组成的集合。思考题思考题(P4)(P4)(1)你能用自然语言描述集合2,4,6,8吗?(2)你能用列举法表示不等式x-73吗?集合的表示方法集合的表示方法 2 2、描述法:、描述法:将集合的所有元素都具有的性质(满足的条件)将集合的所
6、有元素都具有的性质(满足的条件)表示出来,写成表示出来,写成xxp(x)p(x)的形式的形式特征性质特征性质 VennVenn图:图:a,b,c形象形象 直观直观 例例2试分别用列举法和描述法表示下列集合:(1)方程x2-2=0的所有实数根组成的集合;(2)由大于10小于20的所有整数组成的集合。思考题思考题 结合此例,试比较用自然语言、列举法和描述法表示集合时各自的特点和适用的对象。例例3:已知A=a-2,2a2+5a,10,且-3A,求a。例4若A=x|x=3n+1,n Z,B=x|x=3n+2,n Z C=x|x=6n+3,n Z()对于任意a A,b B,是否一定有a+b C?并证明你
7、的结论;(1)若c C,问是否有a A,b B,使得c=a+b;练习与思考练习与思考1、教材P5练习1、22、集合x|y=x+1,xR 、y|y=x+1(x、y)|y=x+1、,x、yR、y=x+1是同一个集合吗?确定性确定性,互互 异性异性,无序性无序性;4.集合的集合的表示方法表示方法;5.集合的集合的分类分类.。教材教材.11.1114.1.1.2集合间的基本关系集合间的基本关系 复习引入复习引入1.集合、元素集合、元素2.集合的分类:有限集、无限集、空集集合的分类:有限集、无限集、空集3.集合元素的特性:确定性、互异性,无序性集合元素的特性:确定性、互异性,无序性3.集合的表示方法:列
8、举法、描述法集合的表示方法:列举法、描述法4.常用数集:常用数集:用列举法表示下面集合:用列举法表示下面集合:RQZNN,*022|23xxxx5的两位数数字和为观察以下几组集合,并指出它们元观察以下几组集合,并指出它们元素间的关系:素间的关系:A=1,2,3,B=1,2,3,4,5;A=x|x1,B=x|x21;A=四边形四边形,B=多边形多边形;A=x|x是两边相等的三角形是两边相等的三角形,B=x|x是等腰三角形是等腰三角形 定定 义义 一般地一般地,对于两个集合对于两个集合A与与B,如果集合如果集合A中的中的任何任何一个元素都是一个元素都是 集合集合B的元素的元素,我们就说这两个集合有
9、包含我们就说这两个集合有包含关系,称集合关系,称集合A为集合为集合B的的子集子集(subset)记作记作 A B(或(或B A)读作读作“A含于含于B”,或或“B包含包含A”BA B A下图叫做下图叫做Venn图图 BABxAx,则若任意注:有两种可能注:有两种可能(1)A是是B的一部分;的一部分;(2)A与与B是同一集是同一集合合 BA图中图中A是否为是否为B的子集的子集?(1)BA(2)判断集合判断集合A是否为集合是否为集合B的子集,的子集,若是则在(若是则在()打)打,若不是则在,若不是则在()打)打:A=1,3,5,B=1,2,3,4,5,6 ()A=1,3,5,B=1,3,6,9 (
10、)A=0,B=x x2+2=0 ()A=a,b,c,d,B=d,b,c,a ()一般地一般地,对于两个集合对于两个集合A与与B,如果集如果集合合A中的任何一个元素都是中的任何一个元素都是 集合集合B的元素的元素,同时同时集合集合B中的任何一个元素都是集合中的任何一个元素都是集合A的元素的元素,则称集合则称集合A等于等于集合集合B,记作记作 A=B定定 义义若若A B且且B A,则则A=B;反之反之,亦然亦然.定定 义义 Venn图为图为AB 对于两个集合对于两个集合A与与B,如果如果A B,但存在元素但存在元素 ,则称集合则称集合A是集合是集合B的的真子集真子集(proper subset)记
11、作记作A BAxBx且,几个结论几个结论空集是任何集合的子集空集是任何集合的子集 A空集是任何非空集合的真子集空集是任何非空集合的真子集 A (A )任何一个集合是它本身的子集,即任何一个集合是它本身的子集,即 A A对于集合对于集合A,B,C,如果,如果 A B,且B C,则A C 注意易混符号注意易混符号 “”与与“”:元素与集合之间:元素与集合之间是属于关系;集合与集合之间是包含是属于关系;集合与集合之间是包含关系如关系如 R,1 1,2,3 0与与:0是含有一个元素是含有一个元素0的集的集合,合,是不含任何元素的集合如是不含任何元素的集合如 0不能写成不能写成=0,0 ,1,1RNNN
12、 例1(1)写出N,Z,Q,R的包含关系,并用Venn图表示(2)判断下列写法是否正确 A A A A A AAA 指出哪些是它的真子集并的所有子集写出集合例,ba,2?,21真子集子集有多少个集合思考、aaa:n 重要结论重要结论 结论:含结论:含n个元素的集合的所有个元素的集合的所有子集的个数是子集的个数是2n,所有真子集的个数是所有真子集的个数是2n-1,非,非空真子集数为空真子集数为2n-2.例例3 设设A=x,x2,xy,B=1,x,y,且且A=B,求实数,求实数x,y的值的值例例4 4 已知集合已知集合06|2xxxP与集合,01|axxQ满足Q P求a的取值组成的集合A课堂小结课
13、堂小结1子集子集,真子集的概念与性质;真子集的概念与性质;3集合与集合集合与集合,元素与集合的元素与集合的关系关系2.集合的相等集合的相等;作业布置作业布置1教材教材P.12 A组组 5 B组组2.2.若若A=x|3x4,B=x|2m1xm+1,当当B A时时,求实数求实数m的取值范围的取值范围 3.已知已知ACBCABA求,8,4,2,0,5,3,2,1,.1.1.3 1.1.3 集合的基本运算(集合的基本运算(1 1)观察集合观察集合A,B,C元素间的关系元素间的关系:(1)A=4,5,6,8,B=3,5,7,8,C=3,4,5,6,7,8(2)A=x|x是有理数是有理数,B=x|x是无理
14、数是无理数,C=x|x是实数是实数定定 义义一般地一般地,由属于集合由属于集合A或或属于集合属于集合B的的所有所有元素组成的集合叫做元素组成的集合叫做A与与B的的并集并集,记作记作 AB即即AB=x|xA,或或xB 读作读作 A并并 BABAB例例1.A=4,5,6,8,B=3,5,7,8,求,求AB.例例2.设设A=x|-1x2,B=x|1x0时,求时,求f(a),f(a-1)的值。的值。1()(1 2)(1)f xx x()42f xxxxxxf211)(例例2 2、求下列函数的定义域。、求下列函数的定义域。(1)(2)(2);(3)(xf =x2 x+3 求:求:f(-1),f(a),f
15、(x+1),f(),f(x2),f(f(x),例例3、已知:已知:x1注意:注意:)(xfy 1 在在 中中f表示对应法则,不同表示对应法则,不同的函数其含义不一样。的函数其含义不一样。2)(xf 不一定是解析式,有时可能是不一定是解析式,有时可能是“列表列表”“”“图象图象”。)(xf)(af3与与 是不同的,前者为变数,是不同的,前者为变数,后者为常数。后者为常数。(四)函数的三要素判断同一函数:(四)函数的三要素判断同一函数:对应法则对应法则f、定义域、定义域A、值域、值域Axxf|)(只有当这三要素完全相同时,两个函数才能只有当这三要素完全相同时,两个函数才能称为同一函数。当有解析式时
16、只要定义域与称为同一函数。当有解析式时只要定义域与解析式一样即可解析式一样即可 xy 2)1(xy 33)2(xy 2)3(xy xxy2)4(例例4、下列函数中哪个与函数、下列函数中哪个与函数是同一个函数?是同一个函数?3)5)(3(1xxxy52 xy111xxy)1)(1(2xxy21)52()(xxf52)(2xxf练习、练习、下列各组中的两个函数是否为相同下列各组中的两个函数是否为相同的函数?的函数?三、小结:三、小结:1函数的定义函数的定义 2、函数的值:、函数的值:3、函数的三要素判断同一函数:、函数的三要素判断同一函数:4、关于求定义域、关于求定义域:四、作业四、作业 P24
17、A 1-6做作业本上做作业本上补充:已知函数补充:已知函数)(xf=4x+3,g(x)=x2,求ff(x),fg(x),gf(x),gg(x).1.2.1 函数的概念函数的概念(二二)二、复习:二、复习:1函数的定义函数的定义 2、定义域、定义域,函数的值和值域函数的值和值域3、函数的三要素判断同一函数、函数的三要素判断同一函数 三、新课:三、新课:1、区间的概念、区间的概念设设a、b是两个实数,且是两个实数,且ab,规定:,规定:bxa(1 1)满足不等式)满足不等式的实数的的实数的x集合叫做闭区间,表示为集合叫做闭区间,表示为a,b;(2 2)满足不等式)满足不等式bxa的实数的的实数的x
18、 x集合叫做开区间,表示为集合叫做开区间,表示为(a,b)(a,b);(3)满足不等式)满足不等式bxa的实数的的实数的x集合叫做半开半闭区间,表示为集合叫做半开半闭区间,表示为a,b);(4 4)满足不等式)满足不等式bxa的的x x集合叫做也叫半开半闭区间,表示为集合叫做也叫半开半闭区间,表示为(a,b(a,b;的实数的实数说明:说明:对于对于a,b,(a,b),a,b),(a,b都称数都称数a和和数数b为区间的端点,其中为区间的端点,其中a为左端点,为左端点,b为右为右端点,称端点,称b-a为区间长度;为区间长度;引入区间概念后,以实数为元素的集合就引入区间概念后,以实数为元素的集合就有
19、四种表示方法:有四种表示方法:不等式表示法:不等式表示法:3x7(一般不用);(一般不用);集合表示法:集合表示法:x|3xa,xb,x0)求f(x)3已知f(x)是一次函数,且ff(x)=4x1,求f(x)的解析式。5动点P从边长为1的正方形ABCD的顶点A出发顺次经过B、C、D再回到A,设x表示P点的行程,f(x)表示PA的长,g(x)表示ABP的面积,求f(x)和g(x),并作出g(x)的简图.1212nn1212xx1194集合A=N,B=m|m=,nN,f:xy=,xA,yB.请计算在f作用下,象的原象分别是多少;原象6的象分别是多少?的定义域求函数265)(:12xxxxf解解:依
20、题有依题有:020652xxx解得:23xx或:265)(2的定义域是xxxxf23xxx或练习1:1,1)(1,0)(),1 1,)(1,1)()11)(:122DCBAxxxf的定义域求函数要用何集要用何集?交集交集!D复合函数求定义域的几种题型复合函数求定义域的几种题型的定义域求的定义域已知一题型)(,)(:)(xgfxf的定义域求的定义域是若例)12(,2,0)(.2xfxf解:由题意知:2120 x2321)12(:xxxf的定义域是故2321x的定义域求的定义域是若练习)(,2,0)(:22xfxf解:202 x22x2,2:2的定义域是故xf由题意知:的定义域求的定义域已知题型二
21、)(,:)(xfxgf的定义域求的定义域已知例)(,5,1(12:3xfxf9,3)(的定义域为xf解:由题意知:51x9123x157x的定义域求的定义域已知)52(,5,1)12(xfxf)1,5752的定义域是xf解:由题意知:练习3:51x9123x9523x题型三:已知函数的定义域,求含参数的取值范围的定义域是一切实数函数为何值时当例347,:2kxkxkxyk430:,0:0)2(kK解得时当时当知综上430,)2(),1(k恒成立对分母可知的定义域为一切实数由Rxkxkxkxkxkxy034,34722(1)当K=0时,30成立的定义域是一切实数3472kxkxkxy解:*求函数
22、的值域的值域是()例、函数)42(35)(xxxf1,7)(DRA)(7,1)(B)1,7)(C例、已知f(n)=,则的值为_ff(n+5),(n10)n-3,(n 10)f(5)归纳小结归纳小结(求定义域的方法求定义域的方法):1常规求定义域的方法4已知函数的定义域,求 含参数的取值范围 的定义域求的定义域、已知,)(2xgfxf 的定义域求的定义域已知)(,3xfxgf(1)f(x)是整式时,则函数的定义域为R(2)f(x)是分式时,则函数定义域为使分母不等于0的实数的集合(3)二次根式时,则函数定义域是使根号内的式子大于0的实数的集合(4)如果f(x)是由几个数学式子构成时,那么函数的定
23、义域是使各部分式子都有意义的实数集合。作业作业:的定义域,求的定义域是已知函数xfyxf2,2)(1的定义域求的定义域是函数已知)31(,2,012 2xfxf1.已知已知,xmnxf )(集合集合Ax|f(x)x且且xm0,Bx|f(x6)x0,若若A3,求集合,求集合B.2.函数函数rf(p)的图象如下图所示的图象如下图所示.(1)函数函数rf(p)的定义域可能是什么?的定义域可能是什么?(2)函数函数rf(p)的值域可能是什么?的值域可能是什么?(3)r的哪些值只与的哪些值只与p的一个值对应?的一个值对应?rO52-5p263.画出定义域为画出定义域为x|3x8,且且x5,值域为值域为y
24、|1y2,y0的一个函的一个函数的图象数的图象.(1)如果平面直角坐标系中点如果平面直角坐标系中点P(x,y)的的坐标满足坐标满足3x8,1y2,那么,那么其中哪些点不能在图象上?其中哪些点不能在图象上?(2)将你的图象和其他同学的相比较,将你的图象和其他同学的相比较,有什么差别吗?有什么差别吗?4.已知函数已知函数f(x)对任意的实数对任意的实数a,b都都有有f(ab)f(a)f(b)成立成立.(1)求求f(0)与与f(1)的值;的值;(2)若若f(2)p,f(3)q(p,q均为常均为常 数数),求,求f(36)的值的值.5.设设f(x)是定义在实数集是定义在实数集R上的函数,上的函数,满足
25、满足f(0)1且对任意实数且对任意实数a,b都有都有f(a)f(ab)b(2ab1),则,则f(x)的解析式可以为的解析式可以为 (A )Af(x)x2x1Bf(x)x22x1Cf(x)x2x1Df(x)x22x15.设设f(x)是定义在实数集是定义在实数集R上的函数,上的函数,满足满足f(0)1且对任意实数且对任意实数a,b都有都有f(a)f(ab)b(2ab1),则,则f(x)的解析式可以为的解析式可以为 (A )Af(x)x2x1Bf(x)x22x1Cf(x)x2x1Df(x)x22x16.如图,矩形的面积为如图,矩形的面积为10.如果矩形的如果矩形的长为长为x,宽为,宽为y,对角线为,
展开阅读全文