[课件]初高中数学衔接教材-高次方程、分式方程、无理方程的解法.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《[课件]初高中数学衔接教材-高次方程、分式方程、无理方程的解法.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 课件 高中数学 衔接 教材 方程 分式 无理方程 解法 下载 _初高中衔接_数学_高中
- 资源描述:
-
1、课件初高中数学衔接教材-高次方程、分式方程、无理方程的解法内容概况内容概况 无理方程无理方程 高次方程高次方程 分式方程分式方程一次或二次方程一次或二次方程 整式方程整式方程有理方程有理方程 因式分解、因式分解、换元换元两边同乘以最简公分母、两边同乘以最简公分母、换元换元两边平方、换元两边平方、换元 2、高次方程的解法、高次方程的解法 我们可通过我们可通过因式分解因式分解和和换元换元将一元高次方程将一元高次方程 转化为一元一次方程和一元二次方程转化为一元一次方程和一元二次方程 一、高次方程的解法一、高次方程的解法知识要点知识要点1、什么是高次方程什么是高次方程 整式方程中,未知数的次数大于或等
2、于整式方程中,未知数的次数大于或等于3的方程称为的方程称为高次方程高次方程 典型例题典型例题03423xxx0)34(2 xxx0)3)(1(xxx所以所以例例1(1)解方程解方程 解:因式分解解:因式分解 3,1,0321xxx 典型例题典型例题013x043)21(122xxx0)1)(1(123xxxx因为因为 所以所以 01x所以所以 例例1(2)解方程解方程 解:解:因式分解因式分解1x典型例题典型例题例例1(3)解方程解方程084223xxx解:解:因式分解因式分解0)2(4)2(2xxx0)2)(4(2xx0)2)(2(2xx所以所以2,2321xxx典型例题典型例题例例2(1)
3、解解 方方 程程024)5(2)5(222xxxx解:解:换元换元 令令 xxt52则原方程可以化为则原方程可以化为 02422 tt即即 0)4)(6(tt 故故 6t或或4t即即 652 xx或或 452 xx解得:解得:4,1,6,14321xxxx典型例题典型例题例例2(2)解方程解方程 19)7)(4)(1)(2(xxxx22(514)(54)19xxxx解:解:原方程即原方程即 换元换元 令令 2514xxt原方程可化为原方程可化为 19)18(tt解得解得 19t或或 1t即即 251419xx 或或 25141xx典型例题典型例题解得:解得:2551x2552x28553x28
4、554x典型例题典型例题例例2(3)解方程解方程解:解:原方程即原方程即 换元换元 令令 原方程可化为原方程可化为 解得解得 或或 即即 12)1)(86()76(2xxx72)176)(176()76(2xxx76 xt72)1(22tt92t82t(舍去)(舍去)3t解得解得 376x32x或或 35x解得解得 解高次方程的一般步骤解高次方程的一般步骤 1 1、整理方程,右边化为、整理方程,右边化为0.0.2 2、将方程左边因式分解,或者进行换元、将方程左边因式分解,或者进行换元 3 3、将方程转化为若干个一次或二次方程、将方程转化为若干个一次或二次方程 4 4、写出原方程的根、写出原方程
5、的根.解高次方程的思路是:解高次方程的思路是:高次高次方程方程一次或二次方程一次或二次方程因式分解、换元因式分解、换元方法提炼方法提炼1.可通过可通过因式分解因式分解将高次方程转化为将高次方程转化为 一次或二次方程一次或二次方程2.可通过可通过换元换元将高次方程转化为将高次方程转化为一次或二次方程一次或二次方程3.n次方程次方程最多最多有有n个实数根个实数根二、分式方程的解法二、分式方程的解法知识要点知识要点1、什么是分式方程什么是分式方程 分母中含有未知数的方程叫分母中含有未知数的方程叫分式方程分式方程.2 2、分式方程的解法、分式方程的解法我们可通过我们可通过将方程两边同乘以最简公分母将方
6、程两边同乘以最简公分母 或者或者换元换元将分式方程转化为整式方程将分式方程转化为整式方程.3 3、解分式方程的注意点、解分式方程的注意点在解分式方程后都必需在解分式方程后都必需检验检验,这是因为从分式这是因为从分式 方程到整式方程的转化方程到整式方程的转化有时不是等价的有时不是等价的.典型例题典型例题例例3(1)解方程解方程 xx527解:解:两边同乘以最简公分母两边同乘以最简公分母)2(xx得得)2(57xx解得解得5x 经检验经检验,5x是原方程的解是原方程的解.典型例题典型例题例例3(2)解方程解方程化简为化简为 13252xxxx解:解:两边同乘以最简公分母两边同乘以最简公分母xx 2
7、得得)(3)1)(25(2xxxx0)1(2x解得解得 1x经检验经检验 1x是增根,原方程无解是增根,原方程无解.为什么会产为什么会产生增根?生增根?增根的定义增根的定义增根增根:在去分母在去分母,将分式方程转化为整式方程将分式方程转化为整式方程的过程中出现的不适合于原方程的根的过程中出现的不适合于原方程的根.产生的原因产生的原因:分式方程两边同乘以一个分式方程两边同乘以一个后后,所得的根是整式方程的根所得的根是整式方程的根,而不是分式方程而不是分式方程的根的根.所以我们解分式方程时一定要代入最简所以我们解分式方程时一定要代入最简公分母检验公分母检验使最简公分母值为零的根使最简公分母值为零的
展开阅读全文