数学名师康彦华谈初高中数学衔接课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《数学名师康彦华谈初高中数学衔接课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 名师 康彦华谈初 高中数学 衔接 课件 下载 _初高中衔接_数学_高中
- 资源描述:
-
1、初高中数学衔接初高中数学衔接 刚从初中升上高中的学生普遍不能刚从初中升上高中的学生普遍不能一下子适应过来,都觉得高一数学难学,一下子适应过来,都觉得高一数学难学,特别是对意志品质薄弱和学习方法不妥特别是对意志品质薄弱和学习方法不妥的那部分学生更是使他们过早地失去学的那部分学生更是使他们过早地失去学数学的兴趣,甚至打击他们的学习信心。数学的兴趣,甚至打击他们的学习信心。如何搞好高初中数学教学的衔接,如何如何搞好高初中数学教学的衔接,如何帮助学生尽快适应高中数学教学特点和帮助学生尽快适应高中数学教学特点和学习特点,跨过学习特点,跨过“高台阶高台阶”,就成为高,就成为高一数学教师的首要任务。一数学教
2、师的首要任务。(一)(一)知识方面的衔接知识方面的衔接(二)数学思想方法的衔接(二)数学思想方法的衔接(三)学习态度与学习方法的衔接(三)学习态度与学习方法的衔接(四)目前初高中数学衔接教学的误区(四)目前初高中数学衔接教学的误区(五)高中数学的课程设置(五)高中数学的课程设置(六)学数学的几个建议(六)学数学的几个建议(一)知识方面的衔接(一)知识方面的衔接(预习之前应该做的事情预习之前应该做的事情)1、绝对值2、整式3、分式4、二次根式5、二次方程(组)6、二次函数的图象和性质(衔接中最重要的衔接中最重要的内容内容)超链接(一)知识方面的衔接(一)知识方面的衔接(预习之前应该做的事情预习之
3、前应该做的事情)1绝对值 绝对值的概念始出现于初一数学课本,它是数学重要概念之一,贯穿于整个初等数学的始终,并随着知识的发展,不断深化2010年广东省的最后一题便是一道绝对值不等式的问题。【初中】借助数轴理解绝对值的意义,并会求有理数的绝对值(绝对值符号内不含字母)【高中】含绝对值不等式在选修系列45不等式选讲 【建议】含字母的绝对值,简单的含绝对值的方程(不等式)的解法高考你看看你看看:(20102010高考)高考)【高中练习示例高中练习示例】【高一前应掌握练习高一前应掌握练习】问题问题1 1:解不等式|x-1|x+3|(一)知识方面的衔接(一)知识方面的衔接 2整式 整式的变形是重要的代数
4、式的恒等变形,也是高中数学中极其常见的运算 【初中】要求了解整式的概念,会进行简单的整式加、减运算,乘法运算(其中的多项式相乘仅指一次式相乘);会利用平方差、完全平方公式进行简单计算;会用提公因式法、公式法(直接用公式不超过二次)进行因式分解(指数是正整数)【高中】不再学习整式【高中练习示例高中练习示例】【高一前应掌握练习高一前应掌握练习】(一)知识方面的衔接(一)知识方面的衔接 3分式 【初中】了解分式的概念,会利用分式的基本性质进行约分和通分,会进行简单的分式加、减、乘、除运算;会解可化为一元一次方程的分式方程(方程中的分式不超过两个);能确定分式函数的自变量取值范围,并会求出函数值 【高
5、中】不再学习。高二选修中,有少量分式高二选修中,有少量分式不等式的学习。不等式的学习。【建议】接触更复杂的分式运算(如分式拆分,分式乘方);解可化为一元二次方程的分式方程【高中练习示例高中练习示例】【高一前应掌握练习高一前应掌握练习】(一)知识方面的衔接(一)知识方面的衔接 4二次根式 高中阶段,我们在学习函数、解析几何、数列等内容时,涉及到大量的与二次根式有关的计算 【初中】了解二次根式的概念及其加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算(不要求分母有理化)【高中】会学习有理指数幂及运算。【建议】根据需要,我们应掌握最简二次根式、同类根式的概念与运用,分子(母)有理化,简单的
6、无理方程(不等式)【高中练习示例高中练习示例】【高一前应掌握练习高一前应掌握练习】(一)知识方面的衔接(一)知识方面的衔接 5.二次方程(组)【初中】会用因式分解法、公式法、配方法解很简单的数字系数的四元二次方程 【高中】不要学习。【建议】(1)理解一元二次方程的根的判别式,并能用判别式判定根的情况;(2)掌握一元二次方程根与系数的关系,并能运用它求含有两根之和、两根之积的代数式的值,还能构造以、为根的一元二次方程;(3)能解决二元二次方程组的相关问题【高中练习示例高中练习示例】【高一前应掌握练习高一前应掌握练习】(一)知识方面的衔接(一)知识方面的衔接 6.二次函数的图象和性质(衔接中最重要
7、的内容衔接中最重要的内容)二次函数知识的生长点在初中,而发展点则在高中,是初高中数学衔接的重要内容二次函数作为一种简单而基本的函数类型,是历年来高考的一项重点考查内容,经久不衰,以它为核心内容的重点试题,也年年有所变化 【初中】确定二次函数的表达式,会用描点法画出二次函数的图象,并能从图象上认识二次函数的性质,会利用二次函数的图象求一元二次方程的近似解 【高中】结合二次函数的图像,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。【建议】高中教材很少专门对二次函数进行研究,所以应该更深入地研究二次函数的图象和性质,包括:简单的图象变换、求给定自变量x的范围的二次函数的最值
展开阅读全文