线性最小均方误差估计的估计规则课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《线性最小均方误差估计的估计规则课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 线性 最小 误差 估计 规则 课件
- 资源描述:
-
1、信号检测与估值信号检测与估值 20162016年春季年春季西电通院郑贱平西电通院郑贱平3.1 问题描述问题描述3.2 随机参量的随机参量的Bayes估计估计3.3 ML估计估计3.4 估计量的性质估计量的性质3.5 线性最小均方误差估计线性最小均方误差估计3.6 最小二乘估计最小二乘估计信号检测与估值信号检测与估值 20162016年春年春季季2数字通信数据帧结构数字通信数据帧结构信道估计:根据信道估计:根据yP、xP以及以及hP的统计的统计 信息,估计信息,估计hP,即:,即:(yP,xP,stat_info(hP)hP (如(如yP=hPxP+w)可行性:一般信道都是可行性:一般信道都是s
2、lowly time varying的(相干时间的(相干时间时延要时延要求),因此求),因此hdhp其他估计问题:载波频率、相位、时延等其他估计问题:载波频率、相位、时延等信号检测与估值信号检测与估值 20162016年春年春季季3估计规则参量空间观测空间Rxp x需要接收端作出估计的参量集合需要接收端作出估计的参量集合参量空间:参量空间:观测空间:观测空间:接收端收到的观测信号的集合接收端收到的观测信号的集合概率映射:概率映射:信源发送信号到接收端过程中,会有噪声的影响,观测信号中信源发送信号到接收端过程中,会有噪声的影响,观测信号中包含被估计矢量的信息,所以观测信号是以被估计矢量为参包含被
3、估计矢量的信息,所以观测信号是以被估计矢量为参数的随机矢量,用数的随机矢量,用 来描述。来描述。xp信号检测与估值信号检测与估值 20162016年春年春季季4本章的核心问题之一就是研究上述函数的构造方法,评估所构造估计量的优劣。本章的核心问题之一就是研究上述函数的构造方法,评估所构造估计量的优劣。估计规则:估计规则:利用被估计矢量的先验知识和观测信号的统计特性,根据指标利用被估计矢量的先验知识和观测信号的统计特性,根据指标要求,构造观测矢量的函数来定义估计量。要求,构造观测矢量的函数来定义估计量。Nxxxgg,21xx估计量性能的评估估计量性能的评估 估计量的均值估计量的均值 估计量的均方误
4、差估计量的均方误差 E x xx 22xxEE信号检测与估值信号检测与估值 20162016年春年春季季5常用代价函数常用代价函数贝叶斯估计的概念贝叶斯估计的概念最小均方误差估计最小均方误差估计最大后验概率估计最大后验概率估计条件中值估计条件中值估计最佳估计的不变性最佳估计的不变性信号检测与估值信号检测与估值 20162016年春年春季季6 2c误差平方代价函数误差平方代价函数 误差绝对值代价函数误差绝对值代价函数 c均匀代价函数均匀代价函数 1,/20,/2cc 贝叶斯估计:使平均代价最小的一种估计准则。贝叶斯估计:使平均代价最小的一种估计准则。代价函数的基本特性:非负性和代价函数的基本特性
5、:非负性和 时的最小性。时的最小性。0信号检测与估值信号检测与估值 20162016年春年春季季7设被估计的单随机变量的先验概率密度函数为设被估计的单随机变量的先验概率密度函数为 p平均代价平均代价C为为 ddpcCxx,的函数和观测矢量是随机参量xc易知代价函数易知代价函数在在 给定,选定代价函数的条件下,使平均代价最小的估计称为贝叶斯给定,选定代价函数的条件下,使平均代价最小的估计称为贝叶斯估计。估计。p信号检测与估值信号检测与估值 20162016年春年春季季8 xxxppp,由由 ddpcCxx,ddppcxxx xxxddpcp是非负值,是非负值,dpcx因此使平均代价最小,就等价于
6、使因此使平均代价最小,就等价于使 dpcCxx最小。最小。条件平均代价条件平均代价信号检测与估值信号检测与估值 20162016年春年春季季9 1100lim|limlim|limlim|lim,|,|,iMMijijjMjiijijjMMjiijjjRMMjijjRMjRRCc P HHP Hc P HHP HcP x HdxP Hc j x P x HdxP Hcx P xdxpdcx P xdxd 估计:参数连续取值;检测:参数取自有限个离散点集合。估计:参数连续取值;检测:参数取自有限个离散点集合。信号检测与估值信号检测与估值 20162016年春年春季季10检测:参量的状态是有限的(
7、检测:参量的状态是有限的(M-ary检测)检测)估计:参量的状态是连续的(比如实数域,复数估计:参量的状态是连续的(比如实数域,复数域)域)当当M时,检测就变成了估计时,检测就变成了估计用检测做估计:用检测做估计:复杂度太高,不合适复杂度太高,不合适用估计做检测:用估计做检测:可以,实际上经常这样用可以,实际上经常这样用比如,在衰落信道比如,在衰落信道y=hx+w的信号检测中,经常对信号的信号检测中,经常对信号先进行先进行估计估计得到得到x的估计值的估计值x1(复数域上的任意值),(复数域上的任意值),然后将其然后将其量化量化到信号星座上的某个点,即检测值到信号星座上的某个点,即检测值x2。无
8、线通信中,有时候并不严格区分检测与估计无线通信中,有时候并不严格区分检测与估计信号检测与估值信号检测与估值 20162016年春年春季季11 2c选定的代价函数为选定的代价函数为 dpcCxxdpx2使条件平均代价最小的一个必要条件是对上式中使条件平均代价最小的一个必要条件是对上式中 求偏导求偏导令偏导为零来求得最佳的估计量令偏导为零来求得最佳的估计量 求解方法求解方法 信号检测与估值信号检测与估值 20162016年春年春季季12xCdpx2dpx222022msedpdpxx1dpxdpmsex信号检测与估值信号检测与估值 20162016年春年春季季13dpmsex注:注:1.最小均方误
9、差估计的估计量实际是条件均值最小均方误差估计的估计量实际是条件均值xxEdpmse2.最小均方误差估计的条件平均代价实际是条件方差最小均方误差估计的条件平均代价实际是条件方差dpCmsemsexx2dpExx23.最小均方误差估计量的另一种形式最小均方误差估计量的另一种形式dpmsex dppxx,dpdpxx,dppdppxx信号检测与估值信号检测与估值 20162016年春年春季季14 1,/20,/2cc dpcCxx选定的代价函数为选定的代价函数为 22221pdpdpd xxx使条件平均代价最小,应该使使条件平均代价最小,应该使 取到最大值取到最大值22dpx当当很小时,为保证上式最
10、大,应当选择估计量很小时,为保证上式最大,应当选择估计量 ,使它处于后验概率密度函数使它处于后验概率密度函数 最大值的位置。最大值的位置。xp22pdp xx信号检测与估值信号检测与估值 20162016年春年春季季150mappx根据上述分析,得到最大后验概率估计量为根据上述分析,得到最大后验概率估计量为两种等价形式两种等价形式0lnmappx 0lnlnmapppx xxxpppp信号检测与估值信号检测与估值 20162016年春年春季季16 c选定的代价函数为选定的代价函数为 dpcCxxdpxdpdpxx使条件平均代价最小的一个必要条件是对上式中使条件平均代价最小的一个必要条件是对上式
11、中 求偏导求偏导 令偏导为零来求得最佳的估计量令偏导为零来求得最佳的估计量 求解方法求解方法 信号检测与估值信号检测与估值 20162016年春年春季季17dpdpxxdpdpxxdpdpdpdpxxxxxxxxxxpdppppdpdpdpxx信号检测与估值信号检测与估值 20162016年春年春季季18研究在加性噪声中单随机参量 的估计问题。观测方程为 Nknxkk,2,1,其中nk是均值为零,方差为 的独立同分布高斯随机噪声 2n被估计量 是均值为零,方差为 高斯随机变量 2求 的贝叶斯估计量(最小均方误差、最大后验和条件中值)信号检测与估值信号检测与估值 20162016年春年春季季19
12、解:0lnlnmapppx根据最大后验估计准则,估计量为满足以下方程的解,即 最大后验估计 2222exp21p2222exp21nknkxxpNknknNkkxxpp122212exp21x由题设,可知,给定由题设,可知,给定 条件下,观测信号条件下,观测信号xk是均值为是均值为 ,方差为,方差为 的高斯的高斯随机变量随机变量 2n信号检测与估值信号检测与估值 20162016年春年春季季20 2212222lnlnNknkxpp x2122222Nknkx所以最大后验估计量为满足以下方程的解所以最大后验估计量为满足以下方程的解 02222212mapNknkxNkknmapxNN12221
13、012212mapnNknkNx 2222exp21pNknknNkkxxpp122212exp21x信号检测与估值信号检测与估值 20162016年春年春季季21估计量的均方误差为估计量的均方误差为 2122221NkknmapxNNEE21222NkknnNE2122222222NkknnnnNNNNE2224222224nnnnNNN2222222nnnNN2222nnN信号检测与估值信号检测与估值 20162016年春年春季季22根据最小均方误差估计准则,估计量为 最小均方误差估计最小均方误差估计 2222exp21p2222exp21nknkxxpNknknNkkxxpp122212
14、exp21x由题设,可知,给定由题设,可知,给定 条件下,观测信号条件下,观测信号xk是均值为是均值为 ,方差为,方差为 的高斯的高斯随机变量随机变量 2ndpmsex信号检测与估值信号检测与估值 20162016年春年春季季23 xxxpppp x1K NknkNnxp1222222222exp21211x NknkkxxK1222221221expx NknknnnNkkxNxK12222222121221exp2expx x2K信号检测与估值信号检测与估值 20162016年春年春季季24 NknknnxNK12222222221expx NknknnnnxNNK122222222222
15、221expx 212222222321expNkknnnxNNKx 2122222222231/2expNkknnnnxNNNKKxx信号检测与估值信号检测与估值 20162016年春年春季季25 212222222321expNkknnnxNNKpxx上述分布是高斯型的,其均值为上述分布是高斯型的,其均值为NkknxN1222估计量的均方误差为估计量的均方误差为方差为方差为2222Nnn所以最小均方误差估计量为所以最小均方误差估计量为NkknmsexN122222222NEnnmse信号检测与估值信号检测与估值 20162016年春年春季季26条件中值估计条件中值估计估计量的均方误差为估计
16、量的均方误差为所以条件中值估计量为所以条件中值估计量为NkknmedxN122222222NEnnmeddpdpxx 212222222321expNkknnnxNNKpxx由于由于信号检测与估值信号检测与估值 20162016年春年春季季27结论:如果被估计量的后验概率密度函数是高斯型的,在三种典型代价函数下,结论:如果被估计量的后验概率密度函数是高斯型的,在三种典型代价函数下,使平均代价最小的估计量相同,都等于最小均方误差估计量,估计量的均方误差使平均代价最小的估计量相同,都等于最小均方误差估计量,估计量的均方误差都是最小的都是最小的 最佳估计的不变性最佳估计的不变性。条件中值估计条件中值
17、估计NkknmedxN1222NkknmsexN1222最小均方误差估计最小均方误差估计最大后验估计最大后验估计NkknmapxNN12221信号检测与估值信号检测与估值 20162016年春年春季季28研究在加性噪声中单随机参量 的估计问题。观测方程为 s,xsn其中n是均值为零,方差为 的独立同分布高斯随机噪声 2n被估计量 在(-SM,SM)之间均匀分布的随机变量s求 的贝叶斯估计量(最小均方误差和最大后验)s信号检测与估值信号检测与估值 20162016年春年春季季29解:lnln0maps sp x sp sss根据最大后验估计准则,估计量为满足以下方程的解,即 最大后验估计 其他,
18、0,21MMMSsSSsp2221exp22nnxsp x s由题设,可知,给定由题设,可知,给定 条件下,观测信号条件下,观测信号xk是均值为是均值为 ,方差为,方差为 的高斯的高斯随机变量随机变量 ss2n信号检测与估值信号检测与估值 20162016年春年春季季30 2212lnln2nMxsp x sp sSssss 2222nnxsxs所以最大后验估计量为满足以下方程的解 20mapns sxsmapsx 其他,0,21MMMSsSSsp2221exp22nnxsp x s信号检测与估值信号检测与估值 20162016年春年春季季31由于s在(-SM,SM)之间取值,所以,MMmap
19、MMMMSxSsxSxSSxS 信号检测与估值信号检测与估值 20162016年春年春季季32根据最小均方误差估计准则,估计量为 最小均方误差估计 222222()11exp22211exp222MMMMmsessnMnssnMnssp s x dssp x s p s dsp x s p s dsxssdssxsdss信号检测与估值信号检测与估值 20162016年春年春季季33222222222211exp22211exp222exp2,exp2MMMMMMMMssnMnssnMnsxsxnsxsxnxssdssxsdssuxuduuxsudu信号检测与估值信号检测与估值 20162016
20、年春年春季季3422222222exp2,/,/,/exp2exp/2exp/2exp2exp/2exp/22d vnd vnnMnd vnd vnd vd vnttdtxtuvxdstdtdvdvxtdtdvdvxQ dvQ dv信号检测与估值信号检测与估值 20162016年春年春季季35ML估计:先验等概下的估计:先验等概下的MAP估计估计出发点:若先验概率出发点:若先验概率 未知,或者未知,或者为非随机为非随机的未知量,此时的未知量,此时MAP不适用。不适用。构造:构造:()p0MLp xln0MLp xargmaxMLpxA信号检测与估值信号检测与估值 20162016年春年春季季3
21、6如果参量如果参量的观测方程为的观测方程为 其中其中nk是均值为零,方差为是均值为零,方差为 的独立同分布高斯随机噪的独立同分布高斯随机噪声;声;是均值为零,方差为是均值为零,方差为 的高斯变量。求的高斯变量。求 并与并与 比较比较Nknxkk,2,1,2n2MLb信号检测与估值信号检测与估值 20162016年春年春季季372211222ln2NNkkknknxxp x2222exp21nknkxxpNknknNkkxxpp122212exp21x0lnmlpxNkkmlxN11信号检测与估值信号检测与估值 20162016年春年春季季38均方误差均方误差221221122211111Nml
22、kkNNkkkkNnkkEExNEnEnNNE nNN信号检测与估值信号检测与估值 20162016年春年春季季3922211NbkknxNN22222211bnnnMLENEN信号检测与估值信号检测与估值 20162016年春年春季季40若若 是一对一变换,有是一对一变换,有.是一对是一对J(J1)变换,变换,g()gMLMLx gMLMLg(|)|;1,.,jp xpxjJ|max|,1,.,argmax|jMLp xpxjJp x信号检测与估值信号检测与估值 20162016年春年春季季41同例同例1,求,求 的的ML估计估计 exp信号检测与估值信号检测与估值 20162016年春年春
23、季季422222exp21nknkxxpNknknNkkxxpp122212exp21x由题设,可知,给定由题设,可知,给定 条件下,观测信号条件下,观测信号xk是均值为是均值为 ,方差为,方差为 的高斯的高斯随机变量随机变量 2n由于由于 是是 的一对一变换,即是单调函数,因此可得的一对一变换,即是单调函数,因此可得解:解:expNknknxp12222lnexp21x信号检测与估值信号检测与估值 20162016年春年春季季43mlNkkmlxNexp1exp1所以最大似然估计量为所以最大似然估计量为Nknkxp1222lnlnx12ln221nNkkx由最大似然估计原理,得最大似然估计量
24、为满足以下方程的解。由最大似然估计原理,得最大似然估计量为满足以下方程的解。0lnmlpx信号检测与估值信号检测与估值 20162016年春年春季季44非随机变量非随机变量 无偏估计无偏估计 有偏估计有偏估计 已知偏差的有偏估计已知偏差的有偏估计 为无偏估计为无偏估计 Epdb xx if 0,.,bie E if 0b if 0bbb信号检测与估值信号检测与估值 20162016年春年春季季45随机变量随机变量 无偏估计无偏估计 有偏估计有偏估计渐近无偏估计渐近无偏估计 if EE ,Epd d xx if EE 1,RVlim,RVNNExE非信号检测与估值信号检测与估值 20162016
25、年春年春季季46对于被估计量对于被估计量 的任意无偏估计的任意无偏估计 和和 ,若估计的均方误差,若估计的均方误差12则称估计量则称估计量 比比 更有效。更有效。12如果如果 的无偏估计量的无偏估计量 小于其他任意无偏估计量的均方误差,则小于其他任意无偏估计量的均方误差,则称该估计量为最小均方误差估计量。称该估计量为最小均方误差估计量。问题:能否确定一个均方误差的下界?问题:能否确定一个均方误差的下界?2212EE信号检测与估值信号检测与估值 20162016年春年春季季47则称估计量则称估计量 是一致收敛的估计量。是一致收敛的估计量。假设根据假设根据N次观测量构造的估计量为次观测量构造的估计
展开阅读全文