等差数列的前n项和性质及应用课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《等差数列的前n项和性质及应用课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 等差数列 性质 应用 课件
- 资源描述:
-
1、等差数列的前等差数列的前n n项和公式项和公式:2)1nnaanS (dnnnaSn2)11 (形式形式1:1:形式形式2:2:复习回顾复习回顾 1.1.将等差数列前将等差数列前n n项和公式项和公式 看作是一个关于看作是一个关于n n的函数,这个函数的函数,这个函数 有什么特点?有什么特点?2)1(1dnnnaSn当当d00时时,S,Sn n是常数项为零的二次函数是常数项为零的二次函数21()22nddSnan则则 Sn=An2+Bn令令1,22ddABa等差数列的前等差数列的前n项的最值问题项的最值问题例例1.已知等差数列已知等差数列an中中,a1=13且且S3=S11,求求n取何值时取何
2、值时,Sn取最大值取最大值.解法解法1由由S3=S11得得113 133 211 1311 1022dd d=2113(1)(2)2nSnn n 214nn 2(7)49n 当当n=7时时,Sn取最大值取最大值49.等差数列的前等差数列的前n项的最值问题项的最值问题例例1.已知等差数列已知等差数列an中中,a1=13且且S3=S11,求求n取何值时取何值时,Sn取最大值取最大值.解法解法2由由S3=S11得得d=20当当n=7时时,Sn取最大值取最大值49.则则Sn的图象如图所示的图象如图所示又又S3=S11所以图象的对称轴为所以图象的对称轴为31172n 7n113Sn等差数列的前等差数列的
3、前n项的最值问题项的最值问题例例1.已知等差数列已知等差数列an中中,a1=13且且S3=S11,求求n取何值时取何值时,Sn取最大值取最大值.解法解法3由由S3=S11得得d=2当当n=7时时,Sn取最大值取最大值49.an=13+(n-1)(-2)=2n+15由由100nnaa 得得152132nn a7+a8=0等差数列的前等差数列的前n项的最值问题项的最值问题例例1.已知等差数列已知等差数列an中中,a1=13且且S3=S11,求求n取何值时取何值时,Sn取最大值取最大值.解法解法4由由S3=S11得得当当n=7时时,Sn取最大值取最大值49.a4+a5+a6+a11=0而而 a4+a
4、11=a5+a10=a6+a9=a7+a8又又d=20a70,a80,d0时时,数列数列前面有若干项为正前面有若干项为正,此时所有正项的和为此时所有正项的和为Sn的最大值的最大值,其其n的值由的值由an0且且an+10求求得得.当当a10时时,数列前面有若干项为数列前面有若干项为负负,此时所有负项的和为此时所有负项的和为Sn的最小值的最小值,其其n的值由的值由an 0且且an+1 0求得求得.练习练习:已知数列已知数列an的通项为的通项为an=26-2n,要使此数列的前要使此数列的前n项和最大项和最大,则则n的值为的值为()A.12 B.13 C.12或或13 D.14C2.等差数列等差数列a
5、n前前n项和的性质项和的性质性质性质1:Sn,S2nSn,S3nS2n,也在等差数列也在等差数列,公差为公差为在等差数列在等差数列an中中,其前其前n项的和为项的和为Sn,则有则有性质性质2:若若Sm=p,Sp=m(mp),则则Sm+p=性质性质3:若若Sm=Sp(mp),则则 Sp+m=性质性质4:(1)若项数为偶数若项数为偶数2n,则则 S2n=n(a1+a2n)=n(an+an+1)(an,an+1为中为中间两项间两项),此时有此时有:S偶偶S奇奇=,SS 奇奇偶偶n2d0nd1nnaa (m+p)性质性质4:(1)若项数为奇数若项数为奇数2n1,则则 S2n-1=(2n 1)an (a
展开阅读全文