书签 分享 收藏 举报 版权申诉 / 54
上传文档赚钱

类型概率论与数理统计第1章课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:4314049
  • 上传时间:2022-11-28
  • 格式:PPT
  • 页数:54
  • 大小:1.13MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《概率论与数理统计第1章课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    概率论 数理统计 课件
    资源描述:

    1、1 目前,数学在经济、金融、管理科学等领目前,数学在经济、金融、管理科学等领域的应用越来越广泛,需要应用随机数学对这域的应用越来越广泛,需要应用随机数学对这些领域中的许多问题及大量数据建模、分析和些领域中的许多问题及大量数据建模、分析和进行推断,为此,必须掌握随机数学的基础课进行推断,为此,必须掌握随机数学的基础课程程概率论概率论与与数理统计数理统计。应应 用用理论基理论基础础2 概率论概率论是研究随机现象的数量规律的数学是研究随机现象的数量规律的数学分支,从近代博弈论逐步发展起来;分支,从近代博弈论逐步发展起来;数理统计数理统计以概率论为工具研究统计资料的收集、整理,以概率论为工具研究统计资

    2、料的收集、整理,并依据收集现象的规律性作出科学的分析和推并依据收集现象的规律性作出科学的分析和推断。断。概率论概率论与与数理统计数理统计以随机现象的统计规律以随机现象的统计规律 性为研究对象,其最终目的在于用随机现象性为研究对象,其最终目的在于用随机现象的规律性指导我们的实践。的规律性指导我们的实践。31.1 随机现象与统计规律性随机现象与统计规律性一、随机现象与决定性现象一、随机现象与决定性现象:在试验或观测之前,不能确切知道哪个:在试验或观测之前,不能确切知道哪个结果会发生,称此现象为结果会发生,称此现象为随机现象随机现象。相反,在。相反,在一定条件下能够明确预知其结果,称此现象为一定条件

    3、下能够明确预知其结果,称此现象为决定性现象决定性现象。4(4)火箭速度超过第一宇宙速度就会摆脱地球火箭速度超过第一宇宙速度就会摆脱地球引力而飞出地球。引力而飞出地球。(2)从从93个产品(其中个产品(其中90正正3次)中抽取一个次)中抽取一个产品;产品;:判断下列现象为随机现象还是决定性现:判断下列现象为随机现象还是决定性现象?象?(1)扔一枚分币;扔一枚分币;(3)在标准大气压下将水加热至在标准大气压下将水加热至100必沸腾;必沸腾;5二、随机试验与样本空间二、随机试验与样本空间:概率论中将对随机现象的观察或为观察:概率论中将对随机现象的观察或为观察随机现象而进行的试验称为随机现象而进行的试

    4、验称为随机试验随机试验,它应具,它应具备以下三个备以下三个特征特征:每次试验的可能结果不止一个,且事先明确每次试验的可能结果不止一个,且事先明确知道试验的所有可能性结果。知道试验的所有可能性结果。进行试验之前不能确定哪一个结果会发生。进行试验之前不能确定哪一个结果会发生。试验可以在相同条件下重复进行。试验可以在相同条件下重复进行。随机试验随机试验简称试验,用英文字母简称试验,用英文字母E表示。表示。6:随机试验:随机试验E的每一个基本结果,称为的每一个基本结果,称为样本样本点点,记为,记为 ;样本点的全体组成的集合称为;样本点的全体组成的集合称为样本样本空间空间,记为,记为 。:求下列随机试验

    5、的样本空间:求下列随机试验的样本空间:(1)将一枚硬币连掷两次;将一枚硬币连掷两次;(3)某人向一目标进行射击,直至命中目标,某人向一目标进行射击,直至命中目标,观察其射击的次数。观察其射击的次数。(2)掷一颗骰子,观察出现的点数;掷一颗骰子,观察出现的点数;7三、随机事件三、随机事件:在随机试验中可能会发生和可能不会发:在随机试验中可能会发生和可能不会发生的事件称为生的事件称为随机事件随机事件,简称,简称事件事件,用大写英,用大写英文字母文字母A,B,C,Ai等表示。等表示。事件事件是样本点的集合,它是样本空间是样本点的集合,它是样本空间 的的子集子集。样本空间样本空间 必然事件必然事件。不

    6、包含任何样本点的空集不包含任何样本点的空集 不可能不可能事件事件。8四、频率的稳定性四、频率的稳定性:对于随机事件:对于随机事件A,若在,若在n次试验中出现了次试验中出现了 次,则称次,则称 nAFn 为事件为事件A在在n次试验中出现的次试验中出现的频率频率。:掷一枚硬币,:掷一枚硬币,A“正面向上正面向上”,几位数学,几位数学家的试验结果如下:家的试验结果如下:9试验次数试验次数n正面向上的次数正面向上的次数正面向上的频率正面向上的频率Fn(A)De Morgen 204810010.488Buffon 404020480.5069Pearson 1200060190.50162400012

    7、0120.5005 Fn(A)稳定在稳定在0.5附近摆动,但不是普通附近摆动,但不是普通的极限意义。的极限意义。10五、概率的统计意义五、概率的统计意义:随机试验:随机试验E中的事件中的事件A,在,在n次重复试验次重复试验中出现的频率为中出现的频率为Fn(A),当,当n很大时,很大时,Fn(A)稳稳定地在某一数值定地在某一数值p的附近摆动,且随着的附近摆动,且随着n的增的增大,摆动幅度会减小,则称大,摆动幅度会减小,则称p为随机事件为随机事件A发生发生的的概率概率,记为,记为 pAP 111.2 随机事件间的关系与运算随机事件间的关系与运算一、关系一、关系1、:事件事件A发生必然导致事件发生必

    8、然导致事件B发生,称发生,称A是是B的的子事件,记为子事件,记为A B。若若A B且且A B,则称事件,则称事件A与事件与事件B等价,等价,记为记为AB。A 122、:事件事件A与事件与事件B同时发生,记为同时发生,记为AB或或AB。n个事件的个事件的交事件交事件指指A1,A2,An同时发生:同时发生:niinAAAA121 3、:事件事件A、B至少有一个发生,记为至少有一个发生,记为AB。n个事件的个事件的并事件并事件指指A1,A2,An至少有一个发生:至少有一个发生:niinAAAA121 134、:事件事件A发生而事件发生而事件B不发生,记为不发生,记为 。BABA 5、:事件事件A与事

    9、件与事件B不可能同时发生,记不可能同时发生,记 。AB当事件当事件A、B互斥时,记互斥时,记ABAB。6、:对于事件对于事件A,称,称“事件事件A不发生不发生”为事件为事件A 的的对对立立事件事件,记,记为为 。A14 A()发生当且仅当)发生当且仅当 (A)不发生;)不发生;若两个事件若两个事件A、B满足满足 称称A、B对立对立或称或称A、B互逆互逆。AA BA AB于是有于是有 ABABABAAAAABABA 3,2,1互斥,反之不成立;互斥,反之不成立;互逆互逆15二、运算规律二、运算规律ABBA 1、:BAAB 2、:CBACBA BCACAB 3、:CBCACBA CBCACBA 1

    10、64、:BABA BABA 此律又称此律又称对偶律对偶律;对于对于n个事件,甚至无限可列个事件,此律个事件,甚至无限可列个事件,此律亦成立。亦成立。nnAAAAAA2121 nnAAAAAA2121 17:圆柱形产品,直径、长度都要合格,产:圆柱形产品,直径、长度都要合格,产品才算合格。品才算合格。规定规定A“长度合格长度合格”;B“直径合格直径合格”;C“产品合格产品合格”,描述,描述A,B,C之间的关系。之间的关系。:A1“2个样品中有一个次品个样品中有一个次品”;A2“2个样品全是次品个样品全是次品”;B“2个样品中至少有一个次品个样品中至少有一个次品”,求求 。BA,218:p.11,

    11、第,第3题。题。:掷骰子,:掷骰子,A=“掷出奇数点掷出奇数点”;B=“点数不点数不超过超过3”;C=“点数大于点数大于2”;D=“掷出掷出5点点”。求求 AB;BC;AB;BD;AB;BA。ACA19:某人连续三次购买体育彩票,每次一张,:某人连续三次购买体育彩票,每次一张,令令A、B、C分别表示其第一、二、三次所买的分别表示其第一、二、三次所买的彩票中奖事件,试用彩票中奖事件,试用A、B、C表示下列事件:表示下列事件:(1)第三次未中奖;第三次未中奖;(2)只有第三次中了奖;只有第三次中了奖;(3)恰有一次中奖;恰有一次中奖;(4)至少有一次中奖;至少有一次中奖;(5)不止一次中奖;不止一

    12、次中奖;(6)至多中奖两次。至多中奖两次。201.3 概率的古典意义概率的古典意义一、古典概型一、古典概型1、:具有下述两个特征的随机现象的数:具有下述两个特征的随机现象的数学模型称为学模型称为古典概型古典概型:试验试验E的样本空间是有限的,即的样本空间是有限的,即 n ,21 每个样本点每个样本点 出现的可能性出现的可能性即发生的概率相同。即发生的概率相同。nii,2,1 nPPPn121 21设设 为古典概型,事件为古典概型,事件A发生的概率定义为发生的概率定义为 n ,21 概率的古典定义概率的古典定义 基本事件总数基本事件总数所包含的基本事件总数所包含的基本事件总数AnkAP 222、

    13、定理定理1.1:非负性非负性:对任一事件:对任一事件A,有,有0P(A)1。规范性规范性:0,1 PP 有限可加性有限可加性:若事件:若事件A,B互斥,则互斥,则 BPAPBAP 进一步,如果进一步,如果A1,A2,Am是两两互斥的事件,则是两两互斥的事件,则 miimiiAPAP11为基本性质为基本性质23 1 APAP 加法公式加法公式:ABPBPAPBAP ABCPBCPACPABPCPBPAPCBAP ABPAPBAP 若若 ,则,则 AB BPAPBAP 24二、古典概型的计算二、古典概型的计算1、复习排列组合复习排列组合 乘法原理乘法原理进行进行A过程有过程有n种方法,种方法,B过

    14、程有过程有m种方法,则种方法,则进行进行AB过程有过程有mn种方法。种方法。加法原理加法原理进行进行A过程有过程有n种方法,种方法,B过程有过程有m种方法,则种方法,则进行进行AB过程有过程有m+n种方法。种方法。25 :从:从n个元素中取出个元素中取出r个元素进行有顺个元素进行有顺序地放置。序地放置。有放回选取有放回选取,从从n个元素中有放回选取个元素中有放回选取r个个元素,共有元素,共有 nr 种方法。种方法。无放回选取无放回选取,从从n个元素中无放回选取个元素中无放回选取r个个元素元素(rn),共有,共有 种方法。种方法。rnrnPA !11rnnrnnnArn 26 :从:从n个元素中

    15、取出个元素中取出r个元素,不必考个元素,不必考虑虑r个元素的前后个元素的前后顺序。设其结果为顺序。设其结果为 或或 。rnC rn组合的计算组合的计算是通过考虑一个组合可以产生多是通过考虑一个组合可以产生多少个排列而得到结果。少个排列而得到结果。rnrnCrA !rnrnrnCrn rnnrnCC 27:某铁路线上共有:某铁路线上共有20个车站,要为这条铁个车站,要为这条铁路线准备多少种车票?路线准备多少种车票?:30个篮球队进行单循环比赛,要进行几个篮球队进行单循环比赛,要进行几场比赛?场比赛?:袋中有:袋中有5红红2白白7个球,有放回地每次从个球,有放回地每次从袋中摸一球,共摸三次,问两次

    16、摸红球、一次袋中摸一球,共摸三次,问两次摸红球、一次摸白球的试验结果有几个?摸白球的试验结果有几个?282 2、具体例子、具体例子 设有设有20个某种零件,其中个某种零件,其中16个为一级品,个为一级品,4个为二级品,现从中任取三个,求:个为二级品,现从中任取三个,求:只有一个一级品的概率;只有一个一级品的概率;至少有一个一级品的概率。至少有一个一级品的概率。从从0、1、2、3这这4个数字中任取个数字中任取3个进行排个进行排列,求列,求“取得的取得的3个数字排成的数是三位数且个数字排成的数是三位数且是偶数是偶数”的概率。的概率。29 一口袋中有一口袋中有5红红2白白7个球,从袋中任取一个球,从

    17、袋中任取一球,有放回地取球,有放回地取2次,求:次,求:均取红球的概率;均取红球的概率;第一次取红球,第二次取白球的概率;第一次取红球,第二次取白球的概率;取得一红一白的概率。取得一红一白的概率。设事件设事件A、B的概率分别为的概率分别为 和和 ,求下列,求下列三种情况下三种情况下 的值:的值:A与与B互斥;互斥;。BA 3121 81 ABP ABP30 在某城市中共发行三种报纸在某城市中共发行三种报纸A、B、C,该城,该城市的居民中,订购市的居民中,订购A的占的占45;订购;订购B的占的占35;订购;订购C的占的占30;同时订购;同时订购A、B的占的占10;同时订购同时订购A、C的占的占8

    18、;同时订购;同时订购B、C的占的占5;同时订购;同时订购A、B、C的占的占3。试求下列百分。试求下列百分率:率:只订购只订购A的;的;正好订购两种报纸;正好订购两种报纸;至少订购一种报纸;至少订购一种报纸;不订购任何报纸。不订购任何报纸。311.4 概率的公理化意义概率的公理化意义一、几何概率一、几何概率:在一个均匀陀螺的圆周上均匀地刻上:在一个均匀陀螺的圆周上均匀地刻上0,3)上的上的诸数字,旋转陀螺至其停止,问诸数字,旋转陀螺至其停止,问B“圆周的接触点圆周的接触点位位于区间于区间1,2)上上”的概率为多少?的概率为多少?解解:由于刻度均匀,圆周上各刻度与桌面接触是等可:由于刻度均匀,圆周

    19、上各刻度与桌面接触是等可能的,因此所求概率应与区间的长度成正比。又概率能的,因此所求概率应与区间的长度成正比。又概率应在应在01之间,故如下定义是合理的:之间,故如下定义是合理的:313,02,1 的长度的长度区间区间的长度的长度区间区间BP32:设试验:设试验E的样本空间为某可度量的区域的样本空间为某可度量的区域,且,且中任一区域出现的可能性的大小与该区域的几何度中任一区域出现的可能性的大小与该区域的几何度量成正比而与该区域的位置和形状无关,则称该试验量成正比而与该区域的位置和形状无关,则称该试验E为几何概型的。如果为几何概型的。如果A是是中的任一区域,且中的任一区域,且A可以可以度量,则定

    20、义度量,则定义A的概率为的概率为 的几何度量的几何度量的几何度量的几何度量 AAP可以为一维可以为一维(长度长度);二维;二维(面积面积);三维;三维(体积体积)。称这。称这样定义的概率为样定义的概率为几何概率几何概率。33:甲、乙两船驶向一个不能同时停泊两艘:甲、乙两船驶向一个不能同时停泊两艘船的码头,它们在一昼夜内到达的时刻是等可船的码头,它们在一昼夜内到达的时刻是等可能的。如果甲船停泊时间为能的。如果甲船停泊时间为1小时,乙船停泊小时,乙船停泊时间为时间为2小时,求它们任一艘都不需要等待码小时,求它们任一艘都不需要等待码头空出的概率。头空出的概率。:把长度为:把长度为a的棒任意折成三段,

    21、求它们可的棒任意折成三段,求它们可以构成一个三角形的概率。以构成一个三角形的概率。34几何概率的基本性质几何概率的基本性质 对任一事件对任一事件A,有,有0P(A)1。0,1 PP 若若A1,A2,Am是两两互不相容的事件,则是两两互不相容的事件,则 miimiiAPAP11为基本性质为基本性质进一步,进一步,m,有限可加性,有限可加性可列可加性。可列可加性。几何概率几何概率同样满足同样满足古典概型古典概型的的性质。性质。35二、概率的公理化定义二、概率的公理化定义 本书所提及的概率全为公理化定义的概率。本书所提及的概率全为公理化定义的概率。古典概率古典概率和和几何概型几何概型均强调等可能性,

    22、存在均强调等可能性,存在很大的局限性。很大的局限性。由由、基本性质基本性质可归纳出概率的公理可归纳出概率的公理化定义。化定义。概率的公理化定义概率的公理化定义 几何概型几何概型古典概率古典概率归纳归纳特例特例36:设:设为基本事件空间,对于任一事件为基本事件空间,对于任一事件A,定义一个实数定义一个实数P(A),它满足如下三条公理:它满足如下三条公理:0P(A)1;P()=1;对于两两互不相容的事件对于两两互不相容的事件Ai,i1,2,有有 11iiiiAPAP则称则称P(A)为事件为事件A的概率。的概率。37:0 P 若若A1,A2,Am两两互不相容,则两两互不相容,则 miimiiAPAP

    23、11 若若 ,则,则P(A)P(B),P(BA)=P(B)P(A)。BA 任意两事件任意两事件A,B,ABPBPAPBAP 38:甲袋中有:甲袋中有2红红1白白3个球,乙袋中有个球,乙袋中有1红红2白白3个球,从甲袋中任取一球放入乙袋个球,从甲袋中任取一球放入乙袋,再从再从乙袋中任取一球放入甲袋,求试验后甲袋中乙袋中任取一球放入甲袋,求试验后甲袋中球的成分不变的概率。球的成分不变的概率。:口袋中有红、黄、白三个球,有放回地:口袋中有红、黄、白三个球,有放回地每次抽一个球,共抽三次。求:每次抽一个球,共抽三次。求:L“三个球三个球中无红或无黄情形中无红或无黄情形”的概率。的概率。391.5 条件

    24、概率与事件独立性条件概率与事件独立性一、条件概率与乘法公式一、条件概率与乘法公式:两台机床加工同一零件,基本情况如下:两台机床加工同一零件,基本情况如下:正品正品次品次品第一台第一台35540第二台第二台5010608515现从现从100只产品中任取一个,只产品中任取一个,A“取到第一台取到第一台的产品的产品”,B“取到正品取到正品”,求:,求:40(1)P(B);(2)如果已知取到的是第一台车床的产品,即已知如果已知取到的是第一台车床的产品,即已知A发生,问发生,问B发生即取到正品的概率为多少?发生即取到正品的概率为多少?解解:10085 BP 如果已知取到的是第一台车床的产品,即已知如果已

    25、知取到的是第一台车床的产品,即已知A发生,问发生,问B发生即取到正品的概率为发生即取到正品的概率为875.04035 ABP :在事件:在事件A发生的条件下发生的条件下(已知已知P(A)0),事,事件件B发生的概率称为发生的概率称为条件概率条件概率,记为,记为 。ABP41:若若P(A)0,则,则 ,即,即 ABPAPABP APABPABP 同理,若同理,若P(B)0,则,则 。BAPBPABP 对称性对称性若若P(A1A2An-1)0,则,则 12121312121 nnnAAAAPAAAPAAPAPAAAP42:袋中有:袋中有10个白球与个白球与90个黑球,现从中无个黑球,现从中无放回地

    26、接连取放回地接连取3个球,求个球,求3个都是白球的概率。个都是白球的概率。:设某种动物从出生算起活:设某种动物从出生算起活20岁以上的概岁以上的概率为率为0.8,活,活25岁以上的概率为岁以上的概率为0.4,如果现在,如果现在有一个有一个20岁的动物,问它能活到岁的动物,问它能活到25岁以上的概岁以上的概率为多少?率为多少?:抛一枚均匀分币:抛一枚均匀分币2次,设次,设Ai=第第i次正面次正面向上向上,i=1,2。求。求 ,。)(21AAP)(2121AAAAP43:现有甲、乙两个品牌的外型完全一样的:现有甲、乙两个品牌的外型完全一样的电池电池17只,甲牌有只,甲牌有6只正品只正品2只次品,乙

    27、牌有只次品,乙牌有5只正品只正品4只次品,从只次品,从17只电池中任意取出只电池中任意取出1只,只,并设并设A“取到甲牌取到甲牌”,B“取到正品取到正品”,求求 ,。)(ABP)(ABP)(BAP)(BAP441.5 条件概率与事件独立性(续)条件概率与事件独立性(续)一、条件概率与乘法公式一、条件概率与乘法公式若若P(B)0,则,则 BPABPBAP 二、全概率公式与贝叶斯公式二、全概率公式与贝叶斯公式1 1、样本空间的划分、样本空间的划分设设为样本空间,事件为样本空间,事件A1,A2,An满足满足 A1,A2,An两两互不相容,即两两互不相容,即 jiAAji niiA1则称则称A1,A2

    28、,An为样本空间为样本空间的一个划分。的一个划分。452 2、全概率公式、全概率公式设设A1,A2,An为样本空间为样本空间的一个划分,的一个划分,P(Ai)0(i=1,2,n),则对任一事件,则对任一事件B,有,有 niiiABPAPBP1全概率公式全概率公式证明证明:nnBABABAAAABBB2121 因为因为A1,A2,An两两互不相容,所以两两互不相容,所以 nBAPBAPBAPBP 21 nnABPAPABPAPABPAP 2211 niiiABPAP1 46:某项考试须由考生抽签答题。已知:某项考试须由考生抽签答题。已知10只只考考签中有签中有3只难签,被考生抽到的考签不再放回,

    29、只难签,被考生抽到的考签不再放回,现有甲、乙两人先后应考,求甲、乙各自抽到现有甲、乙两人先后应考,求甲、乙各自抽到难签的概率。难签的概率。:设有一箱同类型的产品由三家工厂所生:设有一箱同类型的产品由三家工厂所生产,已知其中有产,已知其中有50的产品是第一家工厂所生的产品是第一家工厂所生产的,其它二厂各生产产的,其它二厂各生产25。又知第一、第二。又知第一、第二两厂生产的有两厂生产的有2是次品;第三家工厂生产的有是次品;第三家工厂生产的有4是次品。现从箱中任取一个产品,问拿到的是次品。现从箱中任取一个产品,问拿到的是次品的概率为多少?是次品的概率为多少?473 3、贝叶斯(、贝叶斯(BayesB

    30、ayes)公式)公式设设A1,A2,An为样本空间为样本空间的一个划分,的一个划分,P(Ai)0(i=1,2,n)且且P(B)0则有则有 nkkkiiiABPAPABPAPBAP1贝叶斯公式贝叶斯公式证明证明:因为:因为 nkkkABPAPBP1jinjiAAji ,2,1,故由故由以及以及 BAPBPABPAPBAPiiii 即得。即得。48:发电报,:发电报,A“发发”,P(A)=0.6,“发发”,。“发发收收”的概率为的概率为0.8;“发发但收但收”的概率的概率为为0.2;“发发但收但收”的概率为的概率为0.1;“发发收收”的的概率概率为为0.9。(1)(1)令令B“收到收到”,求,求P

    31、(B);(2)(2)现在收到现在收到,问,问“真是发真是发”的概率。的概率。A 4.0 AP49三、事件独立性三、事件独立性1 1、两个事件、两个事件A,B的独立性的独立性:若事件:若事件A,B满足满足P(AB)=P(A)P(B),称称A与与B独立。独立。定理定理:设:设A,B为事件且为事件且P(A)0,若若A,B相互独相互独立,则立,则 P(B|A)=P(B),即即B发生与发生与A是否发生无关,是否发生无关,反之亦然;反之亦然;A与与 ;与与B;与与 亦相互独立。亦相互独立。BBAA502 2、三个事件、三个事件A,B,C的独立性的独立性:设:设A,B,C是三个事件,若满足是三个事件,若满足

    32、P(AB)=P(A)P(B);P(AC)=P(A)P(C);P(BC)=P(B)P(C);P(ABC)=P(A)P(B)P(C),则称则称A,B,C相互独立。相互独立。证证:若若A,B,C相互独立,则一定两两独立;相互独立,则一定两两独立;若若A,B,C两两独立,则两两独立,则A,B,C不一定相互独立。不一定相互独立。ABPAPABAPBAP BPAPBPAPBPAPAP 1513 3、n个事件个事件相互相互独立独立:设:设A1,A2,An为为n个事件,对于个事件,对于 ,任意,任意 满足满足 nkk 1niiik 211 kkiiiiiiAPAPAPAAAP2121 2n-n-1个等式个等式

    33、则称则称A1,A2,An相互独立。相互独立。此时此时 记记Bi为为Ai或或 ,则,则B1,B2,Bn相互独立。相互独立。iA A1,A2,An相互独立,反之不成立。相互独立,反之不成立。nnAAAPAAAP21211 nnAPAPAPAAAP212111 52:甲、乙两射手独立地向目标射击,:甲、乙两射手独立地向目标射击,A“甲击中甲击中”,B“乙击中乙击中”,C“目标击目标击中中”,P(A)0.9,P(B)0.8,求,求P(C)。:一个工人看三台布机,:一个工人看三台布机,5分钟内第分钟内第i台机台机床停车床停车(i=1,2,3)的概率分别为的概率分别为0.4,0.5,0.7。设设Ai=“第

    34、第i台机床停车台机床停车”,三台布机停车与否三台布机停车与否相相互独立,求互独立,求5分钟内恰有一台停车的概率。分钟内恰有一台停车的概率。534 4、可靠度、可靠度可靠度可靠度指元件能正常工作的概率。指元件能正常工作的概率。设每个元件的可靠度为设每个元件的可靠度为r,n个元件相互独立。个元件相互独立。若若串联串联:独立积独立积 rn 若若并联并联:独立和独立和 1-(1-r)n54:已知事件:已知事件A,B,C,D相互独立。相互独立。A“a闭合闭合”,B“b闭合闭合”,C“c闭合闭合”,D“d闭合闭合”。P(A)P(B)P(C)P(D)0.5。:某种彩票中奖面为:某种彩票中奖面为36,某君一次购买了,某君一次购买了10张,求其中奖的概率。张,求其中奖的概率。求求 E“灯亮灯亮”的概率;的概率;已知灯亮,求开关已知灯亮,求开关a,b同时闭合的概率即求同时闭合的概率即求P(AB|E)。abcd

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:概率论与数理统计第1章课件.ppt
    链接地址:https://www.163wenku.com/p-4314049.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库