智能电器监控器的电磁兼容性设计课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《智能电器监控器的电磁兼容性设计课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 智能 电器 监控器 电磁 兼容性 设计 课件
- 资源描述:
-
1、智能电器监控器的电磁智能电器监控器的电磁兼容性设计兼容性设计 电子产品电磁兼容性设计是保证其可靠安全运行的重要措施之一。随着工业化的高度发展,电磁污染已经严重地影响到各类电子产品的安全可靠运行,电磁兼容性已成为衡量电子产品是否合格的重要指标。智能电器运行于各种电压等级和不同工作电流的现场环境,其监控器将受到电力系统及其用电负载运行时产生的各种电磁干扰。这些干扰不仅影响监控器的正常工作,严重时还将损坏监控器,造成智能电器一次开关操作失误,极大地影响被监控和保护对象的安全可靠运行。提高智能电器电磁兼容性是保证智能电器工作性能和可靠运行的重要措施之一,也是智能电器监控器设计中的一个关键问题。1 电磁
2、兼容概述电磁兼容概述 按IEC标准,电磁兼容(Electromagnetic Compatibility,EMC)是指在有限空间、有限时间、有限频谱资源条件下的各种用电设备可以共存,不使设备可靠性、安全性降低的性能。电子产品的电磁兼容性包括两方面内容:产品抵抗外部电磁干扰,保持正常工作的能力(抗扰性)。自身工作时不对其他电子产品造成干扰的性能(干扰抑制)。对于对于EMC这一概念,作为一门学科,它这一概念,作为一门学科,它称为称为“电磁兼容电磁兼容”,而作为一个设备或系,而作为一个设备或系统的电磁兼容能力,则称为统的电磁兼容能力,则称为“电磁兼容电磁兼容性性”。1.1 电磁兼容基本概电磁兼容基本
3、概 主要讨论常用的基本术语、基本的干扰来源、耦合途径和干扰模型。1.基本术语基本术语 (1 1)电磁干扰电磁干扰(EMI)破坏性电磁能通过辐射或传导在电子设备间传播的过程。(2)电磁敏感度(Electromagnetic Susceptibility,EMS)设备或系统受电磁干扰使工作中断甚至被破坏的评价指标。(3)自兼容性 设备内部数字部分对模拟部分的干扰、导线间的串扰和造成数字电路工作紊乱的内部因素及其抑制能力。(4)抗扰性 设备抵抗空间电磁干扰(辐射干扰)和通过传输电缆、输电线及I/O连接器的电磁干扰的能力。(5)抑制(Suppression)采用某些特殊方法消除或减少存在的射频能量。(
4、6)密封(Containment)采用金属封套或涂有射频导电漆的塑料外壳,屏蔽电磁能量进入设备或从设备泄漏。2设计中常见的设计中常见的电磁干扰类型电磁干扰类型 (1)射频干扰 各类无线通信设备对电子产品工作的干扰。典型的设备故障出现在场强为110 V/m的范围内。(2)电力干扰 电力线电磁场、电流电压浪涌、电压闪变、电力线谐波等产生的电磁干扰。(3 3)静电放电静电放电 不同静电电位的物体因靠近或接触发生的电荷转移。定义:边沿变化小于1 ns的高频放电。方式:接触式和辐射式。接触式放电造成设备永久损坏或潜在隐患;辐射式放电只影响设备工作,不会造成永久性破坏。3.3.简单的电磁干扰模型简单的电磁
5、干扰模型 1 1)简单电磁干扰模型的简单电磁干扰模型的3个要素个要素 (1 1)干扰源干扰源 能发出一定能量的干扰信号的设备。(2)接收器 能接收干扰源能量并受其影响,使工作发生紊乱的器件和设备。(3)耦合路径 干扰源和接收器之间传输电磁干扰能量的路径。2 2)干扰模型干扰模型 4系统级和系统级和PCB级的级的EMI 电子产品的EMC设计需考虑系统(整机)和内部PCB(印制电路板)两个层面,并针对产生干扰的原因,采取抑制措施。(1)系统级)系统级EMI产生的原因和抑制产生的原因和抑制 系统级EMI就是整机受到的电磁干扰。引起系统级干扰的主要因素引起系统级干扰的主要因素 产品封装措施不当。产品整
6、体设计不合理,制造质量不高,电缆与电气接头接地不可靠。PCB布局错误,如信号走线布局和多层板分层不恰当、共模和差模信号滤波器设计不正确、旁路和去耦不足,板上有接地环路等。主要抑制的措施主要抑制的措施 采取合适的方法保证产品良好的屏蔽。合理可靠的接地和旁路设计。选用合适的线路滤波器。保证产品各部分可靠的电气隔离。正确设计各部分间的连线和PCB布线并控制其阻抗等。(2)PCB的的电磁干扰模型电磁干扰模型 干扰主要是频率范围10 kHz100 MHz的射频信号。干扰源干扰源 时钟振荡电路、塑封IC芯片、不正确的布线、匹配不当的阻抗、内部电缆连接器。传播路径传播路径 互连电缆和自由空间等承载射频能量的
7、媒质。接收器接收器 PCB上的元件、信号传输线、电源线。产品电磁兼容性设计的主要内容产品电磁兼容性设计的主要内容 减小自身对外的电磁干扰能量,降低干扰源电压和传播效率。减小进入本体的外界电磁干扰能量,降低自身的电磁敏感度或提高自身的抗扰能力。5电磁干扰的电磁干扰的耦合耦合 从干扰源到接收器,电磁干扰可以有不同的耦合路径,每种路径又有不同的传输机制。(1 1)耦合路径耦合路径 干扰源到接收器的直接辐射;干扰源对接收器信号I/O电缆的辐射。通过信号I/O电缆或AC干线辐射到接收器。通过普通电力线或信号I/O电缆传播。电磁干扰的耦合路径示意图 (2)耦合路径的传输机制)耦合路径的传输机制 每种耦合路
8、径都有传导和辐射两种机制,就是通常所指的“路”和“场”的偶合方式,也称为传导耦合与电磁场耦合。传导耦合通过噪声源与接收器间连线的公共阻抗产生;电磁场耦合是电场和磁场两种耦合机制的综合。电磁场耦合机制的原理图 频率越高,场的影响越大;频率越低,通过路传导的EMI效率越高。实际上,对于任何采用数字信号工作的电子电路,通过路和场耦合的干扰总是同时存在的。1.2 电子产品中电磁发射和磁场干扰的抑电子产品中电磁发射和磁场干扰的抑制制 产品中电磁发射和磁场干扰的产生机理 电磁发射 各种数字电路芯片和高频模拟电路芯片运行过程中,因PCB走线或产品各部分连线的设计不合理而产生天线效应,发出电磁波引起的射频干扰
9、。当电磁波能量达到一定值时,将会影响周围电子设备和自身的正常工作。磁场干扰 产品内部的电源线和高频工作的电感性元件工作时产生的磁场通过辐射方式干扰产品运行,造成的工作紊乱。了解电磁发射和磁场干扰的抑制方法,对产品电磁兼容性设计十分重要。1电子产品的电磁发射及其抑制 在电子设备中,数字电路芯片端口信号跳变沿的频率可达数百兆赫兹,有些模拟电路信号频率达到兆赫兹以上,这些数字或模拟信号都可能通过导线传导干扰或向空中幅射干扰,影响电子设备自身并干扰其他电子设备。抑制电磁发射的基本措施抑制电磁发射的基本措施 (1 1)降低干扰信号的能量降低干扰信号的能量 在不影响产品整体工作性能的前提下,减小数字信号的
10、跳变速率或降低数字信号的传输速度。采用贴片元件,缩短高频工作芯片的外引脚,减小传输高频信号走线的长度,可抑制天线效应,减少高频信号幅射能量。(2)隔离干扰信号的传播途径隔离干扰信号的传播途径 最简单有效的隔离方法是屏蔽,常用的屏蔽有3个层面。采用导磁金属材料外壳封装,外壳可靠接地(大地)。容易产生高频幅射的局部电路或IC芯片加金属屏蔽罩,屏蔽罩接信号地。电路板中传输高速数字信号或高频模拟信号的走线两侧敷铜并接信号地,实现与其他信号线的隔离。(3 3)滤波滤波 直接在电路芯片电源引脚间接入去耦电容或去耦电阻电容,滤除通过电源走线进入芯片的高频干扰信号。在产品交流220 V电源输入端设置电源滤波器
11、,防止产品工作时产生的高频干扰进入电网。2电磁能量的干扰机理及其抑制电磁能量的干扰机理及其抑制 干扰来源干扰来源 大电流或高频导线(或铜排)中流过电流时,在导线周围产生的磁场。开关电源的高频变压器及一切电感元件在工作时必然产生的漏磁通。干扰机理 上述磁通穿过芯片或敏感电路模块,半导体中的带电粒子(电子和空穴)在磁场中受到洛伦兹力,偏离原来的运动方向,使芯片和模块的工作电流波形受磁场变化的调制而发生畸变,导致这些芯片或电路模块的正常工作受到干扰。信号电流总是在闭合回路中流动。当外部干扰磁通穿越闭合回路包围的面积时,会在闭合回路中感应电流,同样会造成电流波形畸变。抑制措施 屏蔽干扰磁场。减小信号电
12、流的回路面积。(1 1)屏蔽方法屏蔽方法 最常用的抑制磁场辐射干扰的措施是采用导电或导磁材料屏蔽。变化的干扰磁通穿过导电材料(如薄铜皮)时,会在其中产生涡流,并生成方向相反的磁通,可以削弱穿过导电屏蔽层的干扰磁通。高频变压器磁心外包一层形成短路环的薄铜皮,可有效抑制变压器漏磁通外泄。用导磁材料(铁板或钢板)做设备的机箱,是整机磁屏蔽的常用方法。这种方法不仅可以抵抗外部干扰磁通进入电子设备,而且能避免内部磁通外泄。屏蔽材料导磁性越好,板越厚,机箱不易发生磁饱和,屏蔽效果也越好。(2 2)减小信号电流回路包围面积的措施减小信号电流回路包围面积的措施 减小信号电流回路面积的目的是减少穿越其中的干扰磁
13、通。常用措施:采用双绞线,使信号电流的去线和回线紧密绞合,可以缩小回包围的面积。用屏蔽线做外部引入的信号线。使用时将心线作为信号电流去线,铜丝编织的屏蔽层作为信号电流的回线,必须单端接信号地。这种方法的回路面积小于双绞线,屏蔽层还能实现磁场屏蔽。在保证绝缘安全的前提下,PCB中的信号线与地线尽量靠近以缩小信号电流回路包围的面积。选用PCB上的IC芯片和电路模块时,在保证电路功能的条件下,应尽量选用电源进线引脚和零伏线引脚靠近的封装 PCB设计时,在确保绝缘安全的前提下,使电源线和零伏线靠近布置。1.3 差模干扰和共模干扰差模干扰和共模干扰 差模干扰 DMI(Difference Mode In
14、terference)和共模干扰 CMI(Common Mode Interference)都是传导干扰。产品工作环境的电磁干扰、PCB板使上各种走线布置、进线和回线自身及其对接地机壳阻抗不完全一致,在交流电源输入端和工作信号输入端会存在共模电压和差模电压,并在传输导线中产生相应的电流。共模电压在电源或信号的进线和回线中产生的干扰电流方向相同,而差模电压产生的电流方向相反。共模电流会差模电流不仅干扰电源和信号的电流波形,还产生磁场辐射,影响PCB的正常工作。差模干扰的抑制 差模电压出现在电源或信号传输的进线和回线间,在进线和回线中的差模电流方向相反,产生方向相反的磁场。只要使进线和回线近距离平
15、行走线,差模电流产生的磁场就可以相互抵消,减小干扰。共模干扰的抑制 共模电压存在于电源或信号的进线和回线与接地金属外壳之间,使得在进线和回线中共模电流的方向相同,产生的磁场方向相同,相互叠加。共模干扰不能简单地通过布线来减小,最有效的措施是使共模电压为零。常用的方法是灵敏接地。系统级共模和差模干扰的抑制 系统级共模和差模干扰是指由产品外部干扰产生的共模/差模电压/电流导致的干扰。当前采用最多、最有效的减少系统级共模和差模干扰的方法,是在产品的交流电源入口端接入适当的线路滤波器,可以有效地隔离外部共模和差模电压及其产生的电流。2.1 监控器受到的主要干扰监控器受到的主要干扰 (1 1)低频干扰低
16、频干扰 造成低频干扰的因素 高、中、低电压电网中的谐波干扰,一般应考虑到40次谐波(2000Hz)。电网电压跌落和短时中断。电网三相电压不平衡和电网频率变化引起的干扰。(2)高频干扰)高频干扰 20kHz以上的电压浪涌,50kHz以上的电流浪涌 与电网中的开关电器操作,变压器、电动机及继电器等感性负载的投切和雷击、线路或负载短路等因素有关。快速瞬变脉冲群干扰 电器元件器接点弹跳、真空断路器操作时电弧电压不稳定引起。(3 3)静电放电干扰静电放电干扰 来自雷电、操作者和邻近物体对设备的放电。(4 4)磁场干扰磁场干扰 工频电流或变压器磁场泄漏产生的工频磁场干扰。由雷电或大功率电力电子装置运行引起
17、的脉冲磁场干扰。2.2 监控器的系统级电磁兼容性设计监控器的系统级电磁兼容性设计 系统级EMC设计的目的是减小监控器整体对低频干扰、高频干扰、静电放电和磁场干扰的灵敏度,提高监控器对这些干扰的抵抗能力。1.静电放电干扰的抑制静电放电干扰的抑制 静电放电静电放电分类分类 直接耦合 造成设备永久损坏。辐射耦合 影响监控器正常工作。抑制方法抑制方法 静电干扰最有效的抑制方法是让监控单元屏蔽外壳良好接地(大地)。操作措施操作措施 把监控单元用的开关电源金属外壳与单元本体的屏蔽外壳可靠连接,同时把单元本体的屏蔽外壳直接接地。2.减小电网电压跌落和短暂中断的影响减小电网电压跌落和短暂中断的影响 (1)采用
18、具有宽输入电压范围并带有储能电感和电容的开关电源为监控器供电。(2)增设对电源供电质量的监视,在电源电压跌落到极限值后,监控器报警并闭锁一些服务功能。(3)设置备用电源。3.3.滤除快速瞬变脉冲群的干扰滤除快速瞬变脉冲群的干扰 (1)(1)干扰来源干扰来源 监控单元输出继电器接点弹跳。一次真空断路器操作时电弧不稳定。(2)特点 单个脉冲上升时间快,持续时间短,能量低,重复频率较高。一般脉冲周期在50s以内,脉冲群重复率1100次/s、尖峰电压2003000V。这种干扰会通过电源、模拟通道、二次采样互感器影响监控器工作。(3 3)应对措施)应对措施 设置电源线路滤波器设置电源线路滤波器 脉冲群干
19、扰信号容易从电源线进入监控器内部,通过辐射或传导耦合的方式干扰内部工作信号或影响电路元件工作。解决方案解决方案 在供电电源的交流输入端接入高品质的无源线路滤波器,将干扰信号阻隔在智能监控器的外部。线路滤波器应同时考虑抑制共模干扰和差模干扰。差模干扰(Vcd)常产生在相间和相与中线之间;共模干扰(Vcm)常出现在电源线与地线之间。线路滤波器的基本结构 消除模拟量输入通道的干扰消除模拟量输入通道的干扰 快速瞬变脉冲群可通过二次(采样用)互感器对模拟量输入通道产生共模和差模干扰。两种抑制措施 监控器专用采样互感器二次侧加入LC组成的型低通滤波器。滤波器设计应保证对基波基本无影响,幅度衰减为零,相移小
20、于0.3。监控器模拟量输入通道线路中接入高频磁环,以不同的接线方式分别抑制差模和共模干扰。用瞬态电压抑制器(TVS)吸收过电压能量 瞬变脉冲群电压以传导或辐射方式干扰监控器工作的直流电源,会使PCB电路中的芯片和元件因承受超过其允许工作电压的脉冲电压而损坏。应对措施应对措施 在电源模块输出直流侧并联瞬态电压抑制器吸收过电压能量。TVS击穿电压按监控器直流电源电压选择,最大峰值脉冲功耗由可能加在电源上过电压能量的最大值决定。装设去耦电容装设去耦电容 每个芯片的电源和零线之间再加一级去耦电容,进一步消除由电源线窜入的干扰通过耦合方式影响PCB板上的信号线。4.电压、电流浪涌的吸收电压、电流浪涌的吸
21、收 常见的浪涌分雷电浪涌电流和开关操作浪涌电压。特点特点 基本上是单极性脉冲或迅速衰减的振荡波,持续时间较长。单极性脉冲上升比较缓慢但能量大。危害方式危害方式 通过传导和辐射进入监控器内部,造成电路芯片、元件甚至整机的损坏。主要应对措施主要应对措施 在电源模块的交流输入侧线路滤波器前和输出直流侧并接过压抑制器。常用元件有压敏电阻、气体放电管和TVS。(1)压敏电阻)压敏电阻 是一种非线性、箝压型电阻元件,用于吸收开关操作、雷击引起的电源线路中的浪涌能量,抑制被保护线路的过电压。电路符号与伏电路符号与伏-安特性安特性 使用特点使用特点 能吸收很大的浪涌电能量,但不能承受毫安级以上的持续电流。主要
22、选用参数主要选用参数 压敏电压 是压敏电阻的击穿电压(或阈值电压),指在其中通入1 mA直流电流时测到的元件两端的电压。压敏电压选择原则压敏电压选择原则 为保证电压抑制效果和元件自身的使用寿命,实际应用中,压敏电压一般按1.5倍被保护电路电压的峰值或2.2倍电路电压有效值选择。(2)通流容量通流容量 环境温度为25,用规定的冲击电流波形对元件冲击规定的次数,其压敏电压的变化不超过10的最大脉冲电流值。通流容量的选择方法通流容量的选择方法 为了压敏电阻自身工作的安全,通流容量应大于元件可能吸收的最大浪涌能量。考虑到保护效果,所选用的通流容量应更大一些,通常根据被保护对象的容量按经验选取。使用要点
23、 用伏安特性尽可能一致的元件并联,可扩大其通流容量。能够吸收的浪涌能量大,但寄生电容容量大,响应时间较长,而且随着冲击次数增加,其漏电流也增加。当前使用较多的是氧化锌(ZnO)压敏电阻。(2)气体放电管)气体放电管 由一对封装在玻璃管中的电极组成,使用时与被保护电路并联。气体放电管的特性气体放电管的特性 表现为开关型。施加在电极间的电压超过极间气体间隙放电阈值时,气体间隙被击穿,呈现出近似短路的状态。击穿的阈值电压随击穿次数增加而降低。气体放电管的使用特点气体放电管的使用特点 一般不在直流电路中使用。交流电路中被击穿后可以恢复,但会产生持续时间较长的恢复电流,可能使气体放电管损坏。因此,气体放
24、电管必须与适当阻值的电阻串联再与被保护电路并联。在实际应用中,气体放电管常与压敏电阻串联使用。原理电路 这种用法可限制出现浪涌时流经气体放电管的跟随电流。同时,由于电容的旁路作用,在放电开始的瞬间,浪涌能量不直接进入压敏电阻,可减缓浪涌次数对压敏电阻漏电流增加的影响。(3)瞬态电压抑制器)瞬态电压抑制器TVS(Transient Voltage Suppressor)是一种二极管形式的高效能保护器件,也是箝位型的电子器件。TVS分为单极性和双极性两种,分别适用于直流和交流电路保护,使用时与被保护对象并联。TVS的特性 TVS使用特点 承受浪涌峰值电流的能力低于压敏电阻,额定的箝位电压越高,耐受
25、浪涌峰值电流的能力越低。在规定反向应用条件下承受一定高能量的浪涌脉冲时,其工作阻抗可在1 ps内由高阻变为低阻,使浪涌脉冲电流通过,并将电压箝制在器件规定的水平。承受的瞬时脉冲功率可达上千瓦,电压箝位时间一般为1012 s,响应时间1 ps。环境温度TA=25,脉冲持续时间t=10 ms条件下,允许的正向浪涌电流可达50200 A。应用要点应用要点 可按保护对象的实际工作电压允许的波动选择器件额定电压。承受浪涌峰值电流的能力较低,在实际应用中,多用于被保护装置电源模块直流输出端的过压保护。用于被保护装置电源模块交流输入端时,一般需要与压敏电阻等大功率浪涌吸收元件配合,作为提高对浪涌响应速度的辅
展开阅读全文