大学精品课件:第1章 误差分析.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《大学精品课件:第1章 误差分析.ppt》由用户(金钥匙文档)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 大学精品课件:第1章 误差分析 大学 精品 课件 误差 分析
- 资源描述:
-
1、试验设计与数据处理 (第二版),Experiment Design and Data Processing,引 言,0.1 试验设计与数据处理的发展概况,20世纪20年代,英国生物统计学家及数学家费歇(RAFisher)提出了方差分析 20世纪50年代,日本统计学家田口玄一将试验设计中应用最广的正交设计表格化 数学家华罗庚教授也在国内积极倡导和普及的“优选法” 我国数学家王元和方开泰于1978年首先提出了均匀设计,0.2 试验设计与数据处理的意义,0.2.1 试验设计的目的: 合理地安排试验,力求用较少的试验次数获得较好结果 例:某试验研究了3个影响因素: A:A1,A2,A3 B:B1,B2
2、,B3 C:C1,C2,C3 全面试验:27次 正交试验:9次,0.2.2 数据处理的目的,通过误差分析,评判试验数据的可靠性; 确定影响试验结果的因素主次,抓住主要矛盾,提高试验效率; 确定试验因素与试验结果之间存在的近似函数关系,并能对试验结果进行预测和优化; 试验因素对试验结果的影响规律,为控制试验提供思路; 确定最优试验方案或配方。,第1章 试验数据的误差分析,误差分析(error analysis) :对原始数据的可靠性进行客观的评定 误差(error) :试验中获得的试验值与它的客观真实值在数值上的不一致 试验结果都具有误差,误差自始至终存在于一切科学实验过程中 客观真实值真值,1
3、.1 真值与平均值,1.1.1 真值(true value) 真值:在某一时刻和某一状态下,某量的客观值或实际值 真值一般是未知的 相对的意义上来说,真值又是已知的 平面三角形三内角之和恒为180 国家标准样品的标称值 国际上公认的计量值 高精度仪器所测之值 多次试验值的平均值,1.1.2 平均值(mean),(1)算术平均值(arithmetic mean),等精度试验值,适合:,试验值服从正态分布,(2)加权平均值(weighted mean),适合不同试验值的精度或可靠性不一致时,wi权重,加权和,(3)对数平均值(logarithmic mean),说明: 若数据的分布具有对数特性,则
4、宜使用对数平均值 对数平均值算术平均值 如果1/2x1/x22 时,可用算术平均值代替,设两个数:x10,x2 0 ,则,(4)几何平均值(geometric mean),当一组试验值取对数后所得数据的分布曲线更加对称时,宜采用几何平均值。 几何平均值算术平均值,设有n个正试验值:x1,x2,xn,则,(5)调和平均值(harmonic mean),常用在涉及到与一些量的倒数有关的场合 调和平均值几何平均值算术平均值,设有n个正试验值:x1,x2,xn,则:,1.2 误差的基本概念,1.2.1 绝对误差(absolute error) (1)定义 绝对误差试验值真值 或,(2)说明,真值未知,
5、绝对误差也未知,可以估计出绝对误差的范围:,绝对误差限或绝对误差上界,或,绝对误差估算方法: 最小刻度的一半为绝对误差; 最小刻度为最大绝对误差; 根据仪表精度等级计算: 绝对误差=量程精度等级%,1.2.2 相对误差(relative error),(1)定义:,或,或,(2)说明:,真值未知,常将x与试验值或平均值之比作为相对误差:,或,可以估计出相对误差的大小范围:,相对误差限或相对误差上界,相对误差常常表示为百分数(%)或千分数(),1.2.3 算术平均误差 (average discrepancy),定义式:,可以反映一组试验数据的误差大小,1.2.4 标准误差 (standard
6、error),当试验次数n无穷大时,总体标准差:,试验次数为有限次时,样本标准差:,表示试验值的精密度,标准差,试验数据精密度,(1)定义:以不可预知的规律变化着的误差,绝对误差时正时负,时大时小 (2)产生的原因: 偶然因素 (3)特点:具有统计规律 小误差比大误差出现机会多 正、负误差出现的次数近似相等 当试验次数足够多时,误差的平均值趋向于零 可以通过增加试验次数减小随机误差 随机误差不可完全避免的,1.3.1 随机误差 (random error ),1.3 试验数据误差的来源及分类,1.3.2 系统误差(systematic error),(1)定义: 一定试验条件下,由某个或某些因
7、素按照某一确定的规律起作用而形成的误差 (2)产生的原因:多方面 (3)特点: 系统误差大小及其符号在同一试验中是恒定的 它不能通过多次试验被发现,也不能通过取多次试验值的平均值而减小 只要对系统误差产生的原因有了充分的认识,才能对它进行校正,或设法消除。,1.3.3 过失误差 (mistake ),(1)定义: 一种显然与事实不符的误差 (2)产生的原因: 实验人员粗心大意造成 (3)特点: 可以完全避免 没有一定的规律,1.4.1 精密度(precision),(1)含义: 反映了随机误差大小的程度 在一定的试验条件下,多次试验值的彼此符合程度 例:甲:11.45,11.46,11.45,
8、11.44 乙:11.39,11.45,11.48,11.50 (2)说明: 可以通过增加试验次数而达到提高数据精密度的目的 试验数据的精密度是建立在数据用途基础之上的 试验过程足够精密,则只需少量几次试验就能满足要求,1.4 试验数据的精准度,(3)精密度判断,极差(range),标准差(standard error),R,精密度,标准差,精密度,方差(variance),标准差的平方: 样本方差( s2 ) 总体方差(2 ) 方差,精密度,1.4.2 正确度(correctness),(1)含义:反映系统误差的大小 (2)正确度与精密度的关系:,精密度不好,但当试验次数相当多时,有时也会得
9、到好的正确度,精密度高并不意味着正确度也高,(a),(b),(c),1.4.3 准确度(accuracy),(1)含义: 反映了系统误差和随机误差的综合 表示了试验结果与真值的一致程度 (2)三者关系 无系统误差的试验,精密度 :ABC 正确度: ABC 准确度: ABC,有系统误差的试验,精密度 :A B C 准确度: A B C ,A B,C,1.5.1 随机误差的检验,1.5 试验数据误差的统计假设检验,(1)目的:,对试验数据的随机误差或精密度进行检验。,(2)检验步骤:,计算统计量,查临界值,一般取0.01或0.05,表示有显著差异的概率,双侧(尾)检验(two-sided/tail
10、ed test) :,检验,若,则判断两方差无显著差异,否则有显著差异,单侧(尾)检验(one-sided/tailed test) : 左侧(尾)检验 :,则判断该方差与原总体方差无显著减小,否则有显著减小,右侧(尾)检验,则判断该方差与原总体方差无显著增大,否则有显著增大,若,若,1.5.1.2 F检验(F-test),(1)目的: 对两组具有正态分布的试验数据之间的精密度进行比较 (2)检验步骤 计算统计量,设有两组试验数据:,都服从正态分布,样本方差分别为,和,和,,则,第一自由度为,第二自由度为,服从F分布,,查临界值 给定的显著水平,查F分布表,临界值,双侧(尾)检验(two-si
展开阅读全文