书签 分享 收藏 举报 版权申诉 / 22
上传文档赚钱

类型大学精品课件:高等数学第五章反常积分审敛法.ppt

  • 上传人(卖家):金钥匙文档
  • 文档编号:431140
  • 上传时间:2020-04-04
  • 格式:PPT
  • 页数:22
  • 大小:540KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《大学精品课件:高等数学第五章反常积分审敛法.ppt》由用户(金钥匙文档)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    大学 精品 课件 高等数学 第五 反常 积分 审敛法
    资源描述:

    1、,二、无界函数反常积分的审敛法,第五节,反常积分,无穷限的反常积分,无界函数的反常积分,一、无穷限反常积分的审敛法,机动 目录 上页 下页 返回 结束,反常积分的审敛法,函数,第五章,一、无穷限反常积分的审敛法,定理1.,若函数,机动 目录 上页 下页 返回 结束,证:,根据极限收敛准则知,存在 ,定理2 . (比较审敛原理),且对充, 则,机动 目录 上页 下页 返回 结束,证: 不失一般性 ,因此,单调递增有上界函数 ,机动 目录 上页 下页 返回 结束,说明: 已知,得下列比较审敛法.,极限存在 ,定理3. (比较审敛法 1),机动 目录 上页 下页 返回 结束,例1. 判别反常积分,解

    2、:,的敛散性 .,机动 目录 上页 下页 返回 结束,由比较审敛法 1 可知原积分收敛 .,思考题: 讨论反常积分,的敛散性 .,提示: 当 x1 时, 利用,可知原积分发散 .,定理4. (极限审敛法1),机动 目录 上页 下页 返回 结束,则有:,1) 当,2) 当,证:,根据极限定义 ,对取定的,当 x 充,分大时, 必有, 即,满足,当,机动 目录 上页 下页 返回 结束,可取,必有,即,注意:,此极限的大小刻画了,例2. 判别反常积分,的敛散性 .,解:,机动 目录 上页 下页 返回 结束,根据极限审敛法 1 , 该积分收敛 .,例3. 判别反常积分,的敛散性 .,解:,根据极限审敛

    3、法 1 , 该积分发散 .,定理5.,机动 目录 上页 下页 返回 结束,证:,则,而,定义. 设反常积分,机动 目录 上页 下页 返回 结束,则称,绝对收敛 ;,则称,条件收敛 .,例4. 判断反常积分,的敛散性 .,解:,根据比,较审敛原理知,故由定理5知所,给积分收敛,(绝对收敛) .,无界函数的反常积分可转化为无穷限的反常积分.,二、无界函数反常积分的审敛法,机动 目录 上页 下页 返回 结束,由定义,例如,因此无穷限反常积分的审敛法完全可平移到无界函数,的反常积分中来 .,定理6. (比较审敛法 2),定理3 目录 上页 下页 返回 结束,瑕点 ,有,有,利用,有类似定理 3 与定理

    4、 4 的如下审敛法.,使对一切充分接近 a 的 x ( x a) .,定理7. (极限审敛法2),定理4 目录 上页 下页 返回 结束,则有:,1) 当,2) 当,例5. 判别反常积分,解:,利用洛必达法则得,根据极限审敛法2 , 所给积分发散 .,例6. 判定椭圆积分,定理4 目录 上页 下页 返回 结束,散性 .,解:,由于,的敛,根据极限审敛法 2 , 椭圆积分收敛 .,类似定理5, 有下列结论:,机动 目录 上页 下页 返回 结束,例7. 判别反常积分,的敛散性 .,解:,称为绝对收敛 .,故对充分小,从而,据比较审敛法2, 所给积分绝对收敛 .,则反常积分,三、 函数,1. 定义,机

    5、动 目录 上页 下页 返回 结束,下面证明这个特殊函数在,内收敛 .,令,机动 目录 上页 下页 返回 结束,综上所述 ,2. 性质,(1) 递推公式,机动 目录 上页 下页 返回 结束,证:,(分部积分),注意到:,(2),机动 目录 上页 下页 返回 结束,证:,(3) 余元公式:,(证明略),(4),机动 目录 上页 下页 返回 结束,得应用中常见的积分,这表明左端的积分可用 函数来计算.,例如,内容小结,1. 两类反常积分的比较审敛法和极限审敛法 .,2. 若在同一积分式中出现两类反常积分,习题课 目录 上页 下页 返回 结束,可通过分项,使每一项只含一种类型的反常积分,只有各项都收敛时,才可保证给定的积分收敛 .,3. 函数的定义及性质 .,思考与练习,P263 题1 (1), (2), (6), (7),P264 题5 (1), (2),作业 P263 1 (3), (4), (5), (8) 2 ; 3,

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:大学精品课件:高等数学第五章反常积分审敛法.ppt
    链接地址:https://www.163wenku.com/p-431140.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库