大学精品课件:高等数学第十章对坐标曲面积分.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《大学精品课件:高等数学第十章对坐标曲面积分.ppt》由用户(金钥匙文档)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 大学 精品 课件 高等数学 第十 坐标 曲面 积分
- 资源描述:
-
1、,第五节,一、有向曲面及曲面元素的投影,二、 对坐标的曲面积分的概念与性质,三、对坐标的曲面积分的计算法,四、两类曲面积分的联系,机动 目录 上页 下页 返回 结束,对坐标的曲面积分,第十章,一、有向曲面及曲面元素的投影, 曲面分类,双侧曲面,单侧曲面,莫比乌斯带,曲面分上侧和下侧,曲面分内侧和外侧,曲面分左侧和右侧,(单侧曲面的典型),机动 目录 上页 下页 返回 结束,其方向用法向量指向,方向余弦, 0 为前侧 0 为后侧,封闭曲面, 0 为右侧 0 为左侧, 0 为上侧 0 为下侧,外侧 内侧, 设 为有向曲面,侧的规定,指定了侧的曲面叫有向曲面,表示 :,其面元,在 xoy 面上的投影
2、记为,的面积为,则规定,类似可规定,机动 目录 上页 下页 返回 结束,二、 对坐标的曲面积分的概念与性质,1. 引例 设稳定流动的不可压缩流体的速度场为,求单位时间流过有向曲面 的流量 .,分析: 若 是面积为S 的平面,则流量,法向量:,流速为常向量:,机动 目录 上页 下页 返回 结束,对一般的有向曲面 ,用“大化小, 常代变, 近似和, 取极限”,对稳定流动的不可压缩流体的,速度场,进行分析可得, 则,机动 目录 上页 下页 返回 结束,设 为光滑的有向曲面, 在 上定义了一个,意分割和在局部面元上任意取点,分,记作,P, Q, R 叫做被积函数;, 叫做积分曲面.,或第二类曲面积分.
3、,下列极限都存在,向量场,若对 的任,2. 定义.,机动 目录 上页 下页 返回 结束,引例中, 流过有向曲面 的流体的流量为,称为Q 在有向曲面上对 z, x 的曲面积分;,称为R 在有向曲面上对 x, y 的曲面积分.,称为P 在有向曲面上对 y, z 的曲面积分;,若记 正侧的单位法向量为,令,则对坐标的曲面积分也常写成如下向量形式,机动 目录 上页 下页 返回 结束,3. 性质,(1) 若,之间无公共内点, 则,(2) 用 表示 的反向曲面, 则,机动 目录 上页 下页 返回 结束,三、对坐标的曲面积分的计算法,定理: 设光滑曲面,取上侧,是 上的连续函数, 则,证:, 取上侧,机动
展开阅读全文