书签 分享 收藏 举报 版权申诉 / 28
上传文档赚钱

类型大学精品课件:高等数学第十章对坐标曲面积分.ppt

  • 上传人(卖家):金钥匙文档
  • 文档编号:431126
  • 上传时间:2020-04-04
  • 格式:PPT
  • 页数:28
  • 大小:1.07MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《大学精品课件:高等数学第十章对坐标曲面积分.ppt》由用户(金钥匙文档)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    大学 精品 课件 高等数学 第十 坐标 曲面 积分
    资源描述:

    1、,第五节,一、有向曲面及曲面元素的投影,二、 对坐标的曲面积分的概念与性质,三、对坐标的曲面积分的计算法,四、两类曲面积分的联系,机动 目录 上页 下页 返回 结束,对坐标的曲面积分,第十章,一、有向曲面及曲面元素的投影, 曲面分类,双侧曲面,单侧曲面,莫比乌斯带,曲面分上侧和下侧,曲面分内侧和外侧,曲面分左侧和右侧,(单侧曲面的典型),机动 目录 上页 下页 返回 结束,其方向用法向量指向,方向余弦, 0 为前侧 0 为后侧,封闭曲面, 0 为右侧 0 为左侧, 0 为上侧 0 为下侧,外侧 内侧, 设 为有向曲面,侧的规定,指定了侧的曲面叫有向曲面,表示 :,其面元,在 xoy 面上的投影

    2、记为,的面积为,则规定,类似可规定,机动 目录 上页 下页 返回 结束,二、 对坐标的曲面积分的概念与性质,1. 引例 设稳定流动的不可压缩流体的速度场为,求单位时间流过有向曲面 的流量 .,分析: 若 是面积为S 的平面,则流量,法向量:,流速为常向量:,机动 目录 上页 下页 返回 结束,对一般的有向曲面 ,用“大化小, 常代变, 近似和, 取极限”,对稳定流动的不可压缩流体的,速度场,进行分析可得, 则,机动 目录 上页 下页 返回 结束,设 为光滑的有向曲面, 在 上定义了一个,意分割和在局部面元上任意取点,分,记作,P, Q, R 叫做被积函数;, 叫做积分曲面.,或第二类曲面积分.

    3、,下列极限都存在,向量场,若对 的任,2. 定义.,机动 目录 上页 下页 返回 结束,引例中, 流过有向曲面 的流体的流量为,称为Q 在有向曲面上对 z, x 的曲面积分;,称为R 在有向曲面上对 x, y 的曲面积分.,称为P 在有向曲面上对 y, z 的曲面积分;,若记 正侧的单位法向量为,令,则对坐标的曲面积分也常写成如下向量形式,机动 目录 上页 下页 返回 结束,3. 性质,(1) 若,之间无公共内点, 则,(2) 用 表示 的反向曲面, 则,机动 目录 上页 下页 返回 结束,三、对坐标的曲面积分的计算法,定理: 设光滑曲面,取上侧,是 上的连续函数, 则,证:, 取上侧,机动

    4、目录 上页 下页 返回 结束, 若,则有, 若,则有,(前正后负),(右正左负),说明:,如果积分曲面 取下侧, 则,机动 目录 上页 下页 返回 结束,例1. 计算,其中 是以原点为中心, 边长为 a 的正立方,体的整个表面的外侧.,解:,利用对称性.,原式, 的顶部,取上侧, 的底部,取下侧,机动 目录 上页 下页 返回 结束,解: 把 分为上下两部分,思考: 下述解法是否正确:,例2. 计算曲面积分,其中 为球面,外侧在第一和第八卦限部分.,机动 目录 上页 下页 返回 结束,机动 目录 上页 下页 返回 结束,例3. 设S 是球面,的外侧 , 计算,解: 利用轮换对称性, 有,机动 目

    5、录 上页 下页 返回 结束,四、两类曲面积分的联系,曲面的方向用法向量的方向余弦刻画,机动 目录 上页 下页 返回 结束,令,向量形式,机动 目录 上页 下页 返回 结束,例4. 位于原点电量为 q 的点电荷产生的电场为,解:,机动 目录 上页 下页 返回 结束,例5. 设,是其外法线与 z 轴正向,夹成的锐角, 计算,解:,机动 目录 上页 下页 返回 结束,例6. 计算曲面积分,其中,解: 利用两类曲面积分的联系, 有, 原式 =,旋转抛物面,介于平面 z= 0,及 z = 2 之间部分的下侧.,机动 目录 上页 下页 返回 结束,原式 =,机动 目录 上页 下页 返回 结束,内容小结,定

    6、义:,1. 两类曲面积分及其联系,机动 目录 上页 下页 返回 结束,性质:,联系:,思考:,的方向有关,上述联系公式是否矛盾 ?,两类曲线积分的定义一个与 的方向无关, 一个与 ,机动 目录 上页 下页 返回 结束,2. 常用计算公式及方法,面积分,第一类 (对面积),第二类 (对坐标),二重积分,(1) 统一积分变量,代入曲面方程 (方程不同时分片积分),(2) 积分元素投影,第一类: 面积投影,第二类: 有向投影,(4) 确定积分域,把曲面积分域投影到相关坐标面,注:二重积分是第一类曲面积分的特殊情况.,转化,机动 目录 上页 下页 返回 结束,当,时,,(上侧取“+”, 下侧取“”),

    7、类似可考虑在 yoz 面及 zox 面上的二重积分转化公式 .,机动 目录 上页 下页 返回 结束,思考与练习,1. P167 题2,提示: 设,则, 取上侧时, 取下侧时,2. P184 题 1,3. P167 题3(3),机动 目录 上页 下页 返回 结束,是平面,在第四卦限部分的上侧 , 计算,提示:,求出 的法方向余弦,转化成第一类曲面积分,P167 题3(3). 设,作业 P167 3 (1) ,(2) , (4) ; 4 (1), (2),第六节 目录 上页 下页 返回 结束,备用题 求,取外侧 .,解:,注意号,其中,机动 目录 上页 下页 返回 结束,利用轮换对称性,机动 目录 上页 下页 返回 结束,

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:大学精品课件:高等数学第十章对坐标曲面积分.ppt
    链接地址:https://www.163wenku.com/p-431126.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库