书签 分享 收藏 举报 版权申诉 / 37
上传文档赚钱

类型大学精品课件:高等数学第十一章傅立叶级数.ppt

  • 上传人(卖家):金钥匙文档
  • 文档编号:431116
  • 上传时间:2020-04-04
  • 格式:PPT
  • 页数:37
  • 大小:1.22MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《大学精品课件:高等数学第十一章傅立叶级数.ppt》由用户(金钥匙文档)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    大学 精品 课件 高等数学 第十一 傅立叶 级数
    资源描述:

    1、,第七节,一、三角级数及三角函数系的正交性,机动 目录 上页 下页 返回 结束,二、函数展开成傅里叶级数,三、正弦级数和余弦级数,第十一章,傅里叶级数,一、三角级数及三角函数系的正交性,简单的周期运动 :,(谐波函数),( A为振幅,复杂的周期运动 :,令,得函数项级数,为角频率,为初相 ),(谐波迭加),称上述形式的级数为三角级数.,机动 目录 上页 下页 返回 结束,定理 1. 组成三角级数的函数系,证:,同理可证 :,正交 ,上的积分等于 0 .,即其中任意两个不同的函数之积在,机动 目录 上页 下页 返回 结束,上的积分不等于 0 .,且有,但是在三角函数系中两个相同的函数的乘积在,机

    2、动 目录 上页 下页 返回 结束,二、函数展开成傅里叶级数,定理 2 . 设 f (x) 是周期为 2 的周期函数 , 且,右端级数可逐项积分, 则有,证: 由定理条件,对在,逐项积分, 得,机动 目录 上页 下页 返回 结束,(利用正交性),类似地, 用 sin k x 乘 式两边, 再逐项积分可得,机动 目录 上页 下页 返回 结束,叶系数为系数的三角级数 称为,的傅里叶系数 ;,由公式 确定的,以,的傅里,的傅里叶级数 .,称为函数,傅里叶 目录 上页 下页 返回 结束,定理3 (收敛定理, 展开定理),设 f (x) 是周期为2的,周期函数,并满足狄利克雷( Dirichlet )条件

    3、:,1) 在一个周期内连续或只有有限个第一类间断点;,2) 在一个周期内只有有限个极值点,则 f (x) 的傅里叶级数收敛 , 且有,x 为间断点,其中,( 证明略 ),为 f (x) 的傅里叶系数 .,x 为连续点,注意: 函数展成傅里叶级数的条件比展成幂级数的条件低得多.,简介 目录 上页 下页 返回 结束,例1.,设 f (x) 是周期为 2 的周期函数 , 它在,上的表达式为,解: 先求傅里叶系数,将 f (x) 展成傅里叶级数.,机动 目录 上页 下页 返回 结束,机动 目录 上页 下页 返回 结束,1) 根据收敛定理可知,时,级数收敛于,2) 傅氏级数的部分和逼近,说明:,f (x

    4、) 的情况见右图.,机动 目录 上页 下页 返回 结束,例2.,上的表达式为,将 f (x) 展成傅里叶级数.,解:,设 f (x) 是周期为 2 的周期函数 , 它在,机动 目录 上页 下页 返回 结束,说明: 当,时, 级数收敛于,机动 目录 上页 下页 返回 结束,周期延拓,傅里叶展开,上的傅里叶级数,定义在 ,上的函数 f (x)的傅氏级数展开法,其它,机动 目录 上页 下页 返回 结束,例3. 将函数,级数 .,则,解: 将 f (x)延拓成以,展成傅里叶,2为周期的函数 F(x) ,机动 目录 上页 下页 返回 结束,利用此展式可求出几个特殊的级数的和.,当 x = 0 时, f

    5、(0) = 0 , 得,说明:,机动 目录 上页 下页 返回 结束,设,已知,又,机动 目录 上页 下页 返回 结束,三、正弦级数和余弦级数,1. 周期为2 的奇、偶函数的傅里叶级数,定理4 . 对周期为 2 的奇函数 f (x) , 其傅里叶级数为,周期为2的偶函数 f (x) , 其傅里叶级数为余弦级数 ,它的傅里叶系数为,正弦级数,它的傅里叶系数为,机动 目录 上页 下页 返回 结束,例4. 设,的表达式为 f (x)x ,将 f (x) 展成傅里叶级数.,是周期为2 的周期函数,它在,解: 若不计,周期为 2 的奇函数,因此,机动 目录 上页 下页 返回 结束,n1,根据收敛定理可得

    6、f (x) 的正弦级数:,级数的部分和,n2,n3,n4,逼近 f (x) 的情况见右图.,n5,机动 目录 上页 下页 返回 结束,例5. 将周期函数,展成傅里叶级数, 其,中E 为正常数 .,解:,是周期为2 的,周期偶函数 , 因此,机动 目录 上页 下页 返回 结束,机动 目录 上页 下页 返回 结束,2. 在0,上的函数展成正弦级数与余弦级数,周期延拓 F (x),f (x) 在 0 , 上展成,周期延拓 F (x),余弦级数,奇延拓,偶延拓,正弦级数,f (x) 在 0 , 上展成,机动 目录 上页 下页 返回 结束,例6. 将函数,分别展成正弦级,数与余弦级数 .,解: 先求正弦

    7、级数.,去掉端点, 将 f (x) 作奇周期延拓,机动 目录 上页 下页 返回 结束,注意:,在端点 x = 0, , 级数的和为0 ,与给定函数,机动 目录 上页 下页 返回 结束,因此得,f (x) = x + 1 的值不同 .,再求余弦级数.,将,则有,作偶周期延拓 ,机动 目录 上页 下页 返回 结束,说明: 令 x = 0 可得,即,机动 目录 上页 下页 返回 结束,内容小结,1. 周期为 2 的函数的傅里叶级数及收敛定理,其中,注意: 若,为间断点,则级数收敛于,机动 目录 上页 下页 返回 结束,2. 周期为 2 的奇、偶函数的傅里叶级数,奇函数,正弦级数,偶函数,余弦级数,3

    8、. 在 0 , 上函数的傅里叶展开法,作奇周期延拓 ,展开为正弦级数,作偶周期延拓 ,展开为余弦级数,1. 在 0 , 上的函数的傅里叶展开法唯一吗 ?,答: 不唯一 , 延拓方式不同级数就不同 .,机动 目录 上页 下页 返回 结束,思考与练习,处收敛于,2.,则它的傅里叶级数在,在,处收敛于 .,提示:,设周期函数在一个周期内的表达式为,机动 目录 上页 下页 返回 结束,3. 设,又设,求当,的表达式 .,解: 由题设可知应对,作奇延拓:,由周期性:,为周期的正弦级数展开式的和函数,定义域,机动 目录 上页 下页 返回 结束,4. 写出函数,傅氏级数的和函数 .,答案:,定理3 目录 上

    9、页 下页 返回 结束,P250 1(1) , (3) ; 2 (1) , (2) ; 3; 5 ; 7 ; 8 (2),第八节 目录 上页 下页 返回 结束,作业,备用题 1.,叶级数展式为,则其中系,提示:,利用“偶倍奇零”,(93 考研),机动 目录 上页 下页 返回 结束,的傅里,2. 设,是以 2 为周期的函数 ,其傅氏系数为,则,的傅氏系数,提示:,令,机动 目录 上页 下页 返回 结束,傅里叶 (1768 1830),法国数学家.,他的著作热的解析,理论(1822) 是数学史上一部经典性,书中系统的运用了三角级数和,三角积分,他的学生将它们命名为傅,里叶级数和傅里叶积分.,最卓越的工具.,以后以傅里叶著作为基础发展起来的,文献,他深信数学是解决实际问题,傅里叶分析对近代数学以及物理和工程技术的发展,都产生了深远的影响.,狄利克雷 (18 05 1859),德国数学家.,对数论, 数学分析和,数学物理有突出的贡献,是解析数论,他是最早提倡严格化,方法的数学家.,函数 f (x) 的傅里叶级数收敛的第一个充分条件;,了改变绝对收敛级数中项的顺序不影响级数的和,举例说明条件收敛级数不具有这样的性质.,他的主要,的创始人之一,并,论文都收在狄利克雷论文集 (1889一1897)中.,1829年他得到了给定,证明,

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:大学精品课件:高等数学第十一章傅立叶级数.ppt
    链接地址:https://www.163wenku.com/p-431116.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库