书签 分享 收藏 举报 版权申诉 / 25
上传文档赚钱

类型大学精品课件:高等数学第十一章常数项级数.ppt

  • 上传人(卖家):金钥匙文档
  • 文档编号:431115
  • 上传时间:2020-04-04
  • 格式:PPT
  • 页数:25
  • 大小:626.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《大学精品课件:高等数学第十一章常数项级数.ppt》由用户(金钥匙文档)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    大学 精品 课件 高等数学 第十一 常数 级数
    资源描述:

    1、无穷级数,无穷级数,无穷级数是研究函数的工具,表示函数,研究性质,数值计算,数项级数,幂级数,付氏级数,第十一章,常数项级数的概念和性质,一、常数项级数的概念,二、无穷级数的基本性质,三、级数收敛的必要条件,*四、柯西审敛原理,机动 目录 上页 下页 返回 结束,第一节,第十一章,一、常数项级数的概念,引例1. 用圆内接正多边形面积逼近圆面积.,依次作圆内接正,边形,这个和逼近于圆的面积 A .,设 a0 表示,即,内接正三角形面积,ak 表示边数,增加时增加的面积,则圆内接正,机动 目录 上页 下页 返回 结束,引例2.,小球从 1 米高处自由落下, 每次跳起的高度减,少一半, 问小球是否会

    2、在某时刻停止运动? 说明道理.,由自由落体运动方程,知,则小球运动的时间为,( s ),设 tk 表示第 k 次小球落地的时间,机动 目录 上页 下页 返回 结束,定义:,给定一个数列,将各项依,即,称上式为无穷级数,,其中第 n 项,叫做级数的一般项,级数的前 n 项和,称为级数的部分和.,次相加, 简记为,收敛 ,则称无穷级数,并称 S 为级数的和,记作,机动 目录 上页 下页 返回 结束,当级数收敛时, 称差值,为级数的余项.,则称无穷级数发散 .,显然,机动 目录 上页 下页 返回 结束,例1. 讨论等比级数,(又称几何级数),( q 称为公比 ) 的敛散性.,解: 1) 若,从而,因

    3、此级数收敛 ,从而,则部分和,因此级数发散 .,其和为,机动 目录 上页 下页 返回 结束,2). 若,因此级数发散 ;,因此,n 为奇数,n 为偶数,从而,综合 1)、2)可知,时, 等比级数收敛 ;,时, 等比级数发散 .,则,级数成为,不存在 , 因此级数发散.,机动 目录 上页 下页 返回 结束,例2. 判别下列级数的敛散性:,解: (1),所以级数 (1) 发散 ;,技巧:,利用 “拆项相消” 求和,机动 目录 上页 下页 返回 结束,(2),所以级数 (2) 收敛, 其和为 1 .,技巧:,利用 “拆项相消” 求和,机动 目录 上页 下页 返回 结束,例3.,判别级数,的敛散性 .

    4、,解:,故原级数收敛 , 其和为,机动 目录 上页 下页 返回 结束,二、无穷级数的基本性质,性质1. 若级数,收敛于 S ,则各项,乘以常数 c 所得级数,也收敛 ,证: 令,则,这说明,收敛 , 其和为 c S .,说明: 级数各项乘以非零常数后其敛散性不变 .,即,其和为 c S .,机动 目录 上页 下页 返回 结束,性质2. 设有两个收敛级数,则级数,也收敛, 其和为,证: 令,则,这说明级数,也收敛, 其和为,机动 目录 上页 下页 返回 结束,说明:,(2) 若两级数中一个收敛一个发散 , 则,必发散 .,但若二级数都发散 ,不一定发散.,例如,(1) 性质2 表明收敛级数可逐项

    5、相加或减 .,(用反证法可证),机动 目录 上页 下页 返回 结束,性质3.,在级数前面加上或去掉有限项, 不会影响级数,的敛散性.,证: 将级数,的前 k 项去掉,的部分和为,数敛散性相同.,当级数收敛时, 其和的关系为,类似可证前面加上有限项的情况 .,极限状况相同,故新旧两级,所得新级数,机动 目录 上页 下页 返回 结束,性质4.,收敛级数加括弧后所成的级数仍收敛于原级数,的和.,证: 设收敛级数,若按某一规律加括弧,则新级数的部分和序列,为原级数部分和,序列,的一个子序列,推论: 若加括弧后的级数发散, 则原级数必发散.,注意: 收敛级数去括弧后所成的级数不一定收敛.,但,发散.,因

    6、此必有,例如,,用反证法可证,例如,机动 目录 上页 下页 返回 结束,例4.判断级数的敛散性:,解: 考虑加括号后的级数,发散 ,从而原级数发散 .,机动 目录 上页 下页 返回 结束,三、级数收敛的必要条件,设收敛级数,则必有,证:,可见: 若级数的一般项不趋于0 , 则级数必发散 .,例如,其一般项为,不趋于0,因此这个级数发散.,机动 目录 上页 下页 返回 结束,注意:,并非级数收敛的充分条件.,例如, 调和级数,虽然,但此级数发散 .,事实上 , 假设调和级数收敛于 S , 则,但,矛盾!,所以假设不真 .,机动 目录 上页 下页 返回 结束,例5. 判断下列级数的敛散性, 若收敛

    7、求其和:,解: (1) 令,则,故,从而,这说明级数(1) 发散.,机动 目录 上页 下页 返回 结束,因,进行拆项相消,这说明原级数收敛 ,其和为,(2),机动 目录 上页 下页 返回 结束,这说明原级数收敛, 其和为 3 .,(3),机动 目录 上页 下页 返回 结束,的充要条件是:,*四、柯西审敛原理,定理.,有,证:,设所给级数部分和数列为,因为,所以, 利用数列,的柯西审敛原理(第一章,第六节) 即得本定理的结论 .,机动 目录 上页 下页 返回 结束,例6.,解:,有,利用柯西审敛原理判别级数,机动 目录 上页 下页 返回 结束,当 nN 时,都有,由柯西审敛原理可知, 级数,作业 P192 1(1), (3) ; 2(2), (3), (4); 3(2); 4(1), (3), (5); *5(3), (4),第二节 目录 上页 下页 返回 结束,

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:大学精品课件:高等数学第十一章常数项级数.ppt
    链接地址:https://www.163wenku.com/p-431115.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库