大学精品课件:高等数学第十二章全微分方程.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《大学精品课件:高等数学第十二章全微分方程.ppt》由用户(金钥匙文档)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 大学 精品 课件 高等数学 第十二 微分方程
- 资源描述:
-
1、,全微分方程,机动 目录 上页 下页 返回 结束,第五节,一、全微分方程,二、积分因子法,第十二章,判别:,P, Q 在某单连通域D内有连续一阶偏导数, 为全微分方程,则,求解步骤:,方法1 凑微分法;,方法2 利用积分与路径无关的条件.,1. 求原函数 u (x, y),2. 由 d u = 0 知通解为 u (x, y) = C .,一、全微分方程,则称,为全微分方程 ( 又叫做恰当方程 ) .,机动 目录 上页 下页 返回 结束,例1. 求解,解: 因为,故这是全微分方程.,则有,因此方程的通解为,机动 目录 上页 下页 返回 结束,例2. 求解,解:, 这是一个全微分方程 .,用凑微分
2、法求通解.,将方程改写为,即,故原方程的通解为,或,机动 目录 上页 下页 返回 结束,二、积分因子法,思考: 如何解方程,这不是一个全微分方程 ,就化成例2 的方程 .,使,为全微分方程,在简单情况下, 可凭观察和经验根据微分倒推式得到,为原方程的积分因子.,但若在方程两边同乘,若存在连续可微函数,积分因子.,例2 目录 上页 下页 返回 结束,常用微分倒推公式:,积分因子不一定唯一 .,例如, 对,可取,机动 目录 上页 下页 返回 结束,例3. 求解,解: 分项组合得,即,选择积分因子,同乘方程两边 , 得,即,因此通解为,即,因 x = 0 也是方程的解 , 故 C 为任意常数 .,机动 目录 上页 下页 返回 结束,作业,P285 1(2), (4), (7); 2(2), (5); 4,习题课1 目录 上页 下页 返回 结束,备用题 解方程,解法1 积分因子法.,原方程变形为,取积分因子,故通解为,此外, y = 0 也是方程的解.,机动 目录 上页 下页 返回 结束,解法2 化为齐次方程.,原方程变形为,积分得,将,代入 ,得通解,此外, y = 0 也是方程的解.,机动 目录 上页 下页 返回 结束,解法3 化为线性方程.,原方程变形为,其通解为,即,此外, y = 0 也是方程的解.,机动 目录 上页 下页 返回 结束,
展开阅读全文