大学精品课件:高等数学第六章几何应用.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《大学精品课件:高等数学第六章几何应用.ppt》由用户(金钥匙文档)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 大学 精品 课件 高等数学 第六 几何 应用
- 资源描述:
-
1、,四、 旋转体的侧面积 (补充),三、已知平行截面面积函数的 立体体积,第二节,一、 平面图形的面积,二、 平面曲线的弧长,机动 目录 上页 下页 返回 结束,定积分在几何学上的应用,第六章,一、平面图形的面积,1. 直角坐标情形,设曲线,与直线,及 x 轴所围曲,则,机动 目录 上页 下页 返回 结束,边梯形面积为 A ,右下图所示图形面积为,例1. 计算两条抛物线,在第一象限所围,所围图形的面积 .,解: 由,得交点,机动 目录 上页 下页 返回 结束,例2. 计算抛物线,与直线,的面积 .,解: 由,得交点,所围图形,为简便计算, 选取 y 作积分变量,则有,机动 目录 上页 下页 返回
2、 结束,例3. 求椭圆,解: 利用对称性 ,所围图形的面积 .,有,利用椭圆的参数方程,应用定积分换元法得,当 a = b 时得圆面积公式,机动 目录 上页 下页 返回 结束,一般地 , 当曲边梯形的曲边由参数方程,给出时,按顺时针方向规定起点和终点的参数值,则曲边梯形面积,机动 目录 上页 下页 返回 结束,例4. 求由摆线,的一拱与 x 轴所围平面图形的面积 .,解:,机动 目录 上页 下页 返回 结束,2. 极坐标情形,求由曲线,及,围成的曲边扇形的面积 .,在区间,上任取小区间,则对应该小区间上曲边扇形面积的近似值为,所求曲边扇形的面积为,机动 目录 上页 下页 返回 结束,对应 从
3、0 变,例5. 计算阿基米德螺线,解:,点击图片任意处 播放开始或暂停,机动 目录 上页 下页 返回 结束,到 2 所围图形面积 .,例6. 计算心形线,所围图形的,面积 .,解:,(利用对称性),心形线 目录 上页 下页 返回 结束,心形线(外摆线的一种),即,点击图中任意点 动画开始或暂停,尖点:,面积:,弧长:,参数的几何意义,例7. 计算心形线,与圆,所围图形的面积 .,解: 利用对称性 ,所求面积,机动 目录 上页 下页 返回 结束,例8. 求双纽线,所围图形面积 .,解: 利用对称性 ,则所求面积为,思考: 用定积分表示该双纽线与圆,所围公共部分的面积 .,机动 目录 上页 下页
4、返回 结束,答案:,二、平面曲线的弧长,当折线段的最大,边长 0 时,折线的长度趋向于一个确定的极限 ,即,并称此曲线弧为可求长的.,定理: 任意光滑曲线弧都是可求长的.,(证明略),机动 目录 上页 下页 返回 结束,则称,(1) 曲线弧由直角坐标方程给出:,弧长元素(弧微分) :,因此所求弧长,(P168),机动 目录 上页 下页 返回 结束,(2) 曲线弧由参数方程给出:,弧长元素(弧微分) :,因此所求弧长,机动 目录 上页 下页 返回 结束,(3) 曲线弧由极坐标方程给出:,因此所求弧长,则得,弧长元素(弧微分) :,(自己验证),机动 目录 上页 下页 返回 结束,例9. 两根电线
5、杆之间的电线, 由于其本身的重量,成悬链线 .,求这一段弧长 .,解:,机动 目录 上页 下页 返回 结束,下垂,悬链线方程为,例10. 求连续曲线段,解:,的弧长.,机动 目录 上页 下页 返回 结束,例11. 计算摆线,一拱,的弧长 .,解:,机动 目录 上页 下页 返回 结束,例12. 求阿基米德螺线,相应于 02,一段的弧长 .,解:,(P349 公式39),小结 目录 上页 下页 返回 结束,三、已知平行截面面积函数的立体体积,设所给立体垂直于x 轴的截面面积为A(x),则对应于小区间,的体积元素为,因此所求立体体积为,机动 目录 上页 下页 返回 结束,上连续,特别 , 当考虑连续
6、曲线段,轴旋转一周围成的立体体积时,有,当考虑连续曲线段,绕 y 轴旋转一周围成的立体体积时,有,机动 目录 上页 下页 返回 结束,例13. 计算由椭圆,所围图形绕 x 轴旋转而,转而成的椭球体的体积.,解: 方法1 利用直角坐标方程,则,(利用对称性),机动 目录 上页 下页 返回 结束,方法2 利用椭圆参数方程,则,特别当b = a 时, 就得半径为a 的球体的体积,机动 目录 上页 下页 返回 结束,例14. 计算摆线,的一拱与 y0,所围成的图形分别绕 x 轴 , y 轴旋转而成的立体体积 .,解: 绕 x 轴旋转而成的体积为,利用对称性,机动 目录 上页 下页 返回 结束,绕 y
展开阅读全文