书签 分享 收藏 举报 版权申诉 / 27
上传文档赚钱

类型大学精品课件:高等数学第九章三重积分.ppt

  • 上传人(卖家):金钥匙文档
  • 文档编号:431078
  • 上传时间:2020-04-04
  • 格式:PPT
  • 页数:27
  • 大小:885.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《大学精品课件:高等数学第九章三重积分.ppt》由用户(金钥匙文档)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    大学 精品 课件 高等数学 第九 三重 积分
    资源描述:

    1、,第三节,一、三重积分的概念,二、三重积分的计算,机动 目录 上页 下页 返回 结束,三重积分,第九章,一、三重积分的概念,类似二重积分解决问题的思想, 采用,引例: 设在空间有限闭区域 内分布着某种不均匀的,物质,求分布在 内的物质的,可得,“大化小, 常代变, 近似和, 求极限”,解决方法:,质量 M .,密度函数为,机动 目录 上页 下页 返回 结束,定义. 设,存在,称为体积元素,若对 作任意分割:,任意取点,则称此极限为函数,在上的三重积分.,在直角坐标系下常写作,三重积分的性质与二重积分相似.,性质:,例如,下列“乘,中值定理.,在有界闭域 上连续,则存在,使得,V 为 的,体积,

    2、积和式” 极限,机动 目录 上页 下页 返回 结束,二、三重积分的计算,1. 利用直角坐标计算三重积分,方法1 . 投影法 (“先一后二”),方法2 . 截面法 (“先二后一”),方法3 . 三次积分法,先假设连续函数,并将它看作某物体,通过计算该物体的质量引出下列各计算,最后, 推广到一般可积函数的积分计算.,的密度函数 ,方法:,机动 目录 上页 下页 返回 结束,方法1. 投影法 (“先一后二” ),该物体的质量为,细长柱体微元的质量为,微元线密度,机动 目录 上页 下页 返回 结束,方法2. 截面法 (“先二后一”),为底, d z 为高的柱形薄片质量为,该物体的质量为,面密度,机动

    3、目录 上页 下页 返回 结束,投影法,方法3. 三次积分法,设区域,利用投影法结果 ,把二重积分化成二次积分即得:,机动 目录 上页 下页 返回 结束,当被积函数在积分域上变号时, 因为,均为非负函数,根据重积分性质仍可用前面介绍的方法计算.,机动 目录 上页 下页 返回 结束,小结: 三重积分的计算方法,方法1. “先一后二”,方法2. “先二后一”,方法3. “三次积分”,具体计算时应根据,三种方法(包含12种形式)各有特点,被积函数及积分域的特点灵活选择.,机动 目录 上页 下页 返回 结束,其中 为三个坐标,例1. 计算三重积分,所围成的闭区域 .,解:,面及平面,机动 目录 上页 下

    4、页 返回 结束,例2. 计算三重积分,解:,用“先二后一 ”,机动 目录 上页 下页 返回 结束,2. 利用柱坐标计算三重积分,就称为点M 的柱坐标.,直角坐标与柱面坐标的关系:,坐标面分别为,圆柱面,半平面,平面,机动 目录 上页 下页 返回 结束,如图所示, 在柱面坐标系中体积元素为,因此,其中,适用范围:,1) 积分域表面用柱面坐标表示时方程简单 ;,2) 被积函数用柱面坐标表示时变量互相分离.,机动 目录 上页 下页 返回 结束,其中为由,例3. 计算三重积分,所围,解: 在柱面坐标系下,及平面,柱面,成半圆柱体.,机动 目录 上页 下页 返回 结束,例4. 计算三重积分,解: 在柱面

    5、坐标系下,所围成 .,与平面,其中由抛物面,原式 =,机动 目录 上页 下页 返回 结束,3. 利用球坐标计算三重积分,就称为点M 的球坐标.,直角坐标与球面坐标的关系,坐标面分别为,机动 目录 上页 下页 返回 结束,如图所示, 在球面坐标系中体积元素为,因此有,其中,适用范围:,1) 积分域表面用球面坐标表示时方程简单;,2) 被积函数用球面坐标表示时变量互相分离.,机动 目录 上页 下页 返回 结束,例5. 计算三重积分,解: 在球面坐标系下,所围立体.,其中,与球面,机动 目录 上页 下页 返回 结束,例6.求曲面,所围立体体积.,解: 由曲面方程可知, 立体位于xoy面上部,利用对称

    6、性, 所求立体体积为,yoz面对称, 并与xoy面相切,故在球坐标系下所围立体为,且关于 xoz,机动 目录 上页 下页 返回 结束,内容小结,积分区域多由坐标面,被积函数形式简洁, 或,* 说明:,三重积分也有类似二重积分的换元积分公式:,对应雅可比行列式为,变量可分离.,围成 ;,机动 目录 上页 下页 返回 结束,1. 将,用三次积分表示,其中由,所,提示:,思考与练习,六个平面,围成 ,机动 目录 上页 下页 返回 结束,2. 设,计算,提示: 利用对称性,原式 =,奇函数,机动 目录 上页 下页 返回 结束,3. 设由锥面,和球面,所围成 , 计算,提示:,利用对称性,用球坐标,机动 目录 上页 下页 返回 结束,作业,P106 1(2),(3),(4); 4; 5; 7; 8; 9 (2); 10 (2) ; 11 (1),(4),第四节 目录 上页 下页 返回 结束,备用题 1. 计算,所围成.,其中 由,分析:若用“先二后一”, 则有,计算较繁!,采用“三次积分”较好.,机动 目录 上页 下页 返回 结束,所围,故可,思考: 若被积函数为 f ( y ) 时, 如何计算简便?,表为,解:,机动 目录 上页 下页 返回 结束,2. 计算,其中,解:,利用对称性,机动 目录 上页 下页 返回 结束,

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:大学精品课件:高等数学第九章三重积分.ppt
    链接地址:https://www.163wenku.com/p-431078.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库