大学精品课件:高等数学第九章三重积分.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《大学精品课件:高等数学第九章三重积分.ppt》由用户(金钥匙文档)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 大学 精品 课件 高等数学 第九 三重 积分
- 资源描述:
-
1、,第三节,一、三重积分的概念,二、三重积分的计算,机动 目录 上页 下页 返回 结束,三重积分,第九章,一、三重积分的概念,类似二重积分解决问题的思想, 采用,引例: 设在空间有限闭区域 内分布着某种不均匀的,物质,求分布在 内的物质的,可得,“大化小, 常代变, 近似和, 求极限”,解决方法:,质量 M .,密度函数为,机动 目录 上页 下页 返回 结束,定义. 设,存在,称为体积元素,若对 作任意分割:,任意取点,则称此极限为函数,在上的三重积分.,在直角坐标系下常写作,三重积分的性质与二重积分相似.,性质:,例如,下列“乘,中值定理.,在有界闭域 上连续,则存在,使得,V 为 的,体积,
2、积和式” 极限,机动 目录 上页 下页 返回 结束,二、三重积分的计算,1. 利用直角坐标计算三重积分,方法1 . 投影法 (“先一后二”),方法2 . 截面法 (“先二后一”),方法3 . 三次积分法,先假设连续函数,并将它看作某物体,通过计算该物体的质量引出下列各计算,最后, 推广到一般可积函数的积分计算.,的密度函数 ,方法:,机动 目录 上页 下页 返回 结束,方法1. 投影法 (“先一后二” ),该物体的质量为,细长柱体微元的质量为,微元线密度,机动 目录 上页 下页 返回 结束,方法2. 截面法 (“先二后一”),为底, d z 为高的柱形薄片质量为,该物体的质量为,面密度,机动
3、目录 上页 下页 返回 结束,投影法,方法3. 三次积分法,设区域,利用投影法结果 ,把二重积分化成二次积分即得:,机动 目录 上页 下页 返回 结束,当被积函数在积分域上变号时, 因为,均为非负函数,根据重积分性质仍可用前面介绍的方法计算.,机动 目录 上页 下页 返回 结束,小结: 三重积分的计算方法,方法1. “先一后二”,方法2. “先二后一”,方法3. “三次积分”,具体计算时应根据,三种方法(包含12种形式)各有特点,被积函数及积分域的特点灵活选择.,机动 目录 上页 下页 返回 结束,其中 为三个坐标,例1. 计算三重积分,所围成的闭区域 .,解:,面及平面,机动 目录 上页 下
展开阅读全文