大学精品课件:高等数学第二章高阶导数.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《大学精品课件:高等数学第二章高阶导数.ppt》由用户(金钥匙文档)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 大学 精品 课件 高等数学 第二 章高阶 导数
- 资源描述:
-
1、,二、高阶导数的运算法则,第三节,一、高阶导数的概念,机动 目录 上页 下页 返回 结束,高阶导数,第二章,一、高阶导数的概念,速度,即,加速度,即,引例:变速直线运动,机动 目录 上页 下页 返回 结束,定义.,若函数,的导数,可导,或,即,或,类似地 , 二阶导数的导数称为三阶导数 ,阶导数的导数称为 n 阶导数 ,或,的二阶导数 ,记作,的导数为,依次类推 ,分别记作,则称,机动 目录 上页 下页 返回 结束,设,求,解:,依次类推 ,例1.,思考: 设,问,可得,机动 目录 上页 下页 返回 结束,例2. 设,求,解:,特别有:,解:,规定 0 ! = 1,思考:,例3. 设,求,机动
2、 目录 上页 下页 返回 结束,例4. 设,求,解:,一般地 ,类似可证:,机动 目录 上页 下页 返回 结束,例5 . 设,解:,机动 目录 上页 下页 返回 结束,例6. 设,求使,存在的最高,分析:,但是,不存在 .,2,又,阶数,机动 目录 上页 下页 返回 结束,二、高阶导数的运算法则,都有 n 阶导数 , 则,(C为常数),莱布尼兹(Leibniz) 公式,推导 目录 上页 下页 返回 结束,用数学归纳法可证莱布尼兹公式成立 .,机动 目录 上页 下页 返回 结束,例7.,求,解: 设,则,代入莱布尼兹公式 , 得,机动 目录 上页 下页 返回 结束,例8. 设,求,解:,即,用莱
3、布尼兹公式求 n 阶导数,令,得,由,得,即,由,得,机动 目录 上页 下页 返回 结束,内容小结,(1) 逐阶求导法,(2) 利用归纳法,(3) 间接法, 利用已知的高阶导数公式,(4) 利用莱布尼兹公式,高阶导数的求法,如,机动 目录 上页 下页 返回 结束,思考与练习,1. 如何求下列函数的 n 阶导数?,解:,解:,机动 目录 上页 下页 返回 结束,(3),提示: 令,原式,原式,机动 目录 上页 下页 返回 结束,解:,机动 目录 上页 下页 返回 结束,2. (填空题) (1) 设,则,提示:,各项均含因子 ( x 2 ),(2) 已知,任意阶可导, 且,时,提示:,则当,机动 目录 上页 下页 返回 结束,3. 试从,导出,解:,同样可求,(见 P101 题4 ),作业 P101 1 (9) , (12) ; 3 ; 4 (2) ; 8 (2) , (3) ; 9 (2) , (3),第四节 目录 上页 下页 返回 结束,解:,设,求,其中 f 二阶可导.,备用题,机动 目录 上页 下页 返回 结束,
展开阅读全文