书签 分享 收藏 举报 版权申诉 / 22
上传文档赚钱

类型大学精品课件:高等数学第八章复合求导.ppt

  • 上传人(卖家):金钥匙文档
  • 文档编号:431062
  • 上传时间:2020-04-04
  • 格式:PPT
  • 页数:22
  • 大小:771KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《大学精品课件:高等数学第八章复合求导.ppt》由用户(金钥匙文档)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    大学 精品 课件 高等数学 第八 复合 求导
    资源描述:

    1、,第四节,一元复合函数,求导法则,本节内容:,一、多元复合函数求导的链式法则,二、多元复合函数的全微分,微分法则,机动 目录 上页 下页 返回 结束,多元复合函数的求导法则,第八章,一、多元复合函数求导的链式法则,定理. 若函数,处偏导连续,在点 t 可导,则复合函数,证: 设 t 取增量t ,则相应中间变量,且有链式法则,机动 目录 上页 下页 返回 结束,有增量u ,v ,( 全导数公式 ),(t0 时,根式前加“”号),机动 目录 上页 下页 返回 结束,若定理中,说明:,例如:,易知:,但复合函数,偏导数连续减弱为,偏导数存在,机动 目录 上页 下页 返回 结束,则定理结论不一定成立.

    2、,推广:,1) 中间变量多于两个的情形. 例如,设下面所涉及的函数都可微 .,2) 中间变量是多元函数的情形.例如,机动 目录 上页 下页 返回 结束,又如,当它们都具有可微条件时, 有,注意:,这里,表示固定 y 对 x 求导,表示固定 v 对 x 求导,口诀 :,分段用乘, 分叉用加, 单路全导, 叉路偏导,与,不同,机动 目录 上页 下页 返回 结束,例1. 设,解:,机动 目录 上页 下页 返回 结束,例2.,解:,机动 目录 上页 下页 返回 结束,例3. 设,求全导数,解:,注意:多元抽象复合函数求导在偏微分方程变形与,机动 目录 上页 下页 返回 结束,验证解的问题中经常遇到,下

    3、列两个例题有助于掌握,这方面问题的求导技巧与常用导数符号.,为简便起见 , 引入记号,例4. 设,f 具有二阶连续偏导数,求,解: 令,则,机动 目录 上页 下页 返回 结束,例5. 设,二阶偏导数连续,求下列表达式在,解: 已知,极坐标系下的形式,(1), 则,机动 目录 上页 下页 返回 结束,题目 目录 上页 下页 返回 结束,已知,注意利用 已有公式,机动 目录 上页 下页 返回 结束,同理可得,题目 目录 上页 下页 返回 结束,二、多元复合函数的全微分,设函数,的全微分为,可见无论 u , v 是自变量还是中间变量,则复合函数,都可微,其全微分表达,形式都一样,这性质叫做全微分形式

    4、不变性.,机动 目录 上页 下页 返回 结束,例1 .,例 6.,利用全微分形式不变性再解例1.,解:,所以,机动 目录 上页 下页 返回 结束,内容小结,1. 复合函数求导的链式法则,“分段用乘,分叉用加,单路全导,叉路偏导”,例如,2. 全微分形式不变性,不论 u , v 是自变量还是因变量,机动 目录 上页 下页 返回 结束,思考与练习,解答提示:,P31 题7,P31 题7; 8(2); P73 题11,机动 目录 上页 下页 返回 结束,P31 题8(2),机动 目录 上页 下页 返回 结束,作业 P31 2; 4; 6; 9; 10; 12(4); 13,P73题 11,第五节 目录 上页 下页 返回 结束,备用题,1. 已知,求,解: 由,两边对 x 求导, 得,机动 目录 上页 下页 返回 结束,2.,求,解: 由题设,(2001考研),机动 目录 上页 下页 返回 结束,

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:大学精品课件:高等数学第八章复合求导.ppt
    链接地址:https://www.163wenku.com/p-431062.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库