书签 分享 收藏 举报 版权申诉 / 41
上传文档赚钱

类型实验设计与优化-统计学基础课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:4307604
  • 上传时间:2022-11-28
  • 格式:PPT
  • 页数:41
  • 大小:244.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《实验设计与优化-统计学基础课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    实验设计 优化 统计学 基础 课件
    资源描述:

    1、试验设计及优化-统计学基础试验设计与数据处理概述定义o 狭义的试验设计主要是指试验单位(试验单元)的选取、重复数目的确定、试验单位的分组和试验处理的安排。合理的试验设计能控制和降低试验误差,提高试验的精确性合理的试验设计能控制和降低试验误差,提高试验的精确性,为统为统计分析获得试验处理效应和试验误差的无偏估计提供必要的数据。计分析获得试验处理效应和试验误差的无偏估计提供必要的数据。o 数据处理:研究试验测量或观察值的分析计算处理方法.承认并尽量排除偶然因素的干扰承认并尽量排除偶然因素的干扰,将处理间是否存在本质差异揭示将处理间是否存在本质差异揭示出来出来.可以揭示出试验指标或性状间的内在联系可

    2、以揭示出试验指标或性状间的内在联系试验设计与数据处理概述发展20世纪20年代,费歇(英国)提出方差分析,并应用于生物学、农业、遗传学等领域,使得试验设计成为统计学的一个分支。20世纪50年代,田口玄一(日本)深入浅出的解说了正交试验表格,使其广泛使用。我国:华罗庚-积极倡导和普及优选法 王元和方开泰-提出均匀设计近年,出现了各种应用软件:SAS(统计分析系统)、SPSS(社会科学统计包)、Matlab Origin、Excel试验设计与数据处理概述意义实验变化规律实用目的实验目的、影响因素、-选择方法科学安排实验误差分析可靠性确定因素主次抓住主要矛盾因素与结果间的函数关系,预测实验结果实验因素

    3、对实验结果的影响规律确定最优实验方案本课程主要框架o 统计学基础(讲课4学时)o 数据的统计检验(讲课4学时)o 方差分析(讲课4学时,上机2学时)o 回归分析(讲课4学时,上机2学时)o 正交试验设计(讲课4学时,上机2学时)o 均匀设计(讲课4学时,上机2学时)统计学基础(一)o 统计学中的常用术语o 误差的表示法及分类o 随机误差的正态分布及标准正态分布统计学中的常用术语总体与样本总体:根据研究目的确定的研究对象的全体个体:总体中的每一个研究单位样本:依据一定方法由总体中抽取部分个体所组 成的集合有限总体:含有有限个个体的总体无限总体:包含有无限多个个体的总体样本容量:样本中所包含的个体

    4、数目频率:在n次测定中,随机事件A出现了nA次,则F(A)=nA/n称为随机事件A在n次实验中出现的频率.统计学基础统计学基础(一一)统计学中的常用术语概率:随机事件A发生的可能性大小P(A).频率的极限为概率.必然事件P=1;不可能事件P=0;随机事件0P1试验研究的目的:了解总体,然而能观测到的却是样本,通过样本来推断总体是统计分析的基本特点。随机抽取:是指总体中的每一个个体都有同等的机会被抽取到样本中统计分析的特点-有很大的可靠性但有一定的错误率真值:某量的客观值或实际值统计学基础统计学基础(一一)统计学中的常用术语平均值算术平均值:观察值的总和除 以其个数.代表性较高 统计学基础统计学

    5、基础(一一)若没有系统误差,则总体平均值若没有系统误差,则总体平均值就是真实值就是真实值总体平均值:加权平均值P3:为了增加结果的可靠性,对出现频率大或误差较小的测量值乘以一个与频率或误差相关的较大的数,对出现频率小或误差较大的数乘以一个与频率或误差相关的较小的数.这个数就叫权.P4,P41-1统计学中的常用术语平均值统计学基础统计学基础(一一)中位值:是将一系列测定数据按大小顺序排列是中间的那个数值(奇数次测定)。如测定次数为偶数次,则中位值为正中两个值的平均值,其优点是求法简便而又直观。例:求下列数据的平均值和中位值。20.06,20.10,20.08,20.20。误差的表示法绝对误差:实

    6、验值与真值之差x=x-xt(P5,P41-2)相对误差:ER=x/xt x/x(P7:例1-3,1-4.)统计学基础统计学基础(一一)例:有一已知含糖量为24.36%的奶粉,进行数次测定所得的平均值为24.31%,计算这个平均值的绝对误差和相对误差。精密度(Precision)是指在相同条件下,对同一量进行多次重复测定时,测定值的离散程度。表达测定数据的重现性,它是反映随机误差大小的一个量,测定值越集中,测定精密度越高。精密度通常用偏差来量度。偏差是用测定值与一系列测定数据的平均值之差来表示。精密度和准确度统计学基础统计学基础(一一)二者均好精密度好二者皆不好?甲甲乙乙丙丙真值 24.05%2

    7、4.15%24.25%24.35%24.45%丁丁误差的表示法偏差:di=xi-x平均偏差:2()xn统计学基础统计学基础(一一)标准偏差:2()1xxsn22()()lim1nx xxnn特点:简单;但大偏差得不到应有反映。误差的分类统计学基础统计学基础(一一)系统误差,系统误差是由较确定的原因引起的,可校正系统误差,系统误差是由较确定的原因引起的,可校正和消除。和消除。(正确度正确度)随机误差,随机误差是由不确定原因引起的,不可避免随机误差,随机误差是由不确定原因引起的,不可避免和消除。和消除。(精密度精密度:极差极差,标准差标准差,方差方差)过失误差,过失误差是指一种显然与事实不符的误差

    8、,过失误差,过失误差是指一种显然与事实不符的误差,必须避免和剔除必须避免和剔除。l准确度准确度:正确度正确度+精密度精密度l随机误差是由一些偶然因素造成的误差,其大小、方向都不固定,随机误差是由一些偶然因素造成的误差,其大小、方向都不固定,l难以预计,不能测量也无法消除。难以预计,不能测量也无法消除。l它的出现似乎很不规律,但实质上,它的出现和分布服从统计规律它的出现似乎很不规律,但实质上,它的出现和分布服从统计规律减小误差-提高准确度1.选择合适的分析方法(根据被测物含量、共选择合适的分析方法(根据被测物含量、共存元素的干扰情况)。存元素的干扰情况)。2.减少分析过程的误差。减少分析过程的误

    9、差。A.减小测量误差。B.增加平行测定的次数,减小随机误差。C.消除测量中的系统误差。统计学基础统计学基础(一一)随机误差的正态(高斯)分布N(,2)统计学基础统计学基础(一一)2x-1yfx)e22()2(正态分布的数学表达式:随机误差的分布规律:1)偏差大小相等、符号相反的测定值出偏差大小相等、符号相反的测定值出现的概率大致相等现的概率大致相等2)偏差小的测定值比偏差较大的测定值偏差小的测定值比偏差较大的测定值出现的概率大,偏差很大的测定值出现出现的概率大,偏差很大的测定值出现的概率极小,趋近于的概率极小,趋近于03)大多数测定值集中在大多数测定值集中在的附近,所以的附近,所以为最可信赖值

    10、或最佳值为最可信赖值或最佳值有界性有界性,单峰性单峰性,对称性对称性,补偿性补偿性概率密度函数y随机误差的标准正态分布N(0,1)xu统计学基础统计学基础(一一)221fxe2u()标准正态分布的数学表达式:令则xu又则duedxxfxFu2221)()(/dxdu 2221)(ueuf随机误差的标准正态分布统计学基础统计学基础(一一)所以分析化学中以误差2作为允许的最大误差,大于2出现的机会不到5%,同时误差在3以内的测定有99.74%的机会出现,即误差大于3的测定只有0.26%(1000次测定才不到3次)。从计算结果可知,95以上的测量值都会落在范围内,随机误差x-超过 的大误差(或测量值

    11、)出现的概率20,已很接近已很接近)预测分析数据和置信度根据统计学的理论,可以期望使真值以指定的概根据统计学的理论,可以期望使真值以指定的概率落在测定平均值附近的一个界限内,这个界率落在测定平均值附近的一个界限内,这个界限被称为置信界限。如,测定某食品中水的含限被称为置信界限。如,测定某食品中水的含量,报告为:量,报告为:%H2O(95%)=71.380.22%这个报告能比较明确地说明数据的合理性,既不这个报告能比较明确地说明数据的合理性,既不绝对化而又很明确地回答问题。绝对化而又很明确地回答问题。统计学基础统计学基础(二二)预测分析数据和置信度测定的平均值为测定的平均值为 71.38%。有有

    12、95%的把握认为试样的含水量落在的把握认为试样的含水量落在71.380.22%这个范围内。这个范围内。要求有要求有95%的把握,这称之为置信水平,表示对可靠的把握,这称之为置信水平,表示对可靠性要求的准则。在分析化学中常按性要求的准则。在分析化学中常按95%的置信水平来的置信水平来要求。要求。0.22%称之为置信区间,其大小取决于测定的总体称之为置信区间,其大小取决于测定的总体标准偏差标准偏差和和置信水平的选择,平均值的置信区间还与置信水平的选择,平均值的置信区间还与测定次数有关测定次数有关。另外另外,=1-95%=5%.显著性水平显著性水平统计学基础统计学基础(二二)总体平均值的区间估计在一

    13、定置信度上,根据在一定置信度上,根据 (样本)估计(样本)估计(总体平均值)(总体平均值)可能存在的区间可能存在的区间,当当 ,显然,显然做不到,少数测量得到的总带有一定的不确定性,做不到,少数测量得到的总带有一定的不确定性,所以只能在一定置信度上,根据所以只能在一定置信度上,根据 对对可能存在可能存在的区间作出估计的区间作出估计 由由t分布式分布式 这表示在一定置信度下,以平均值这表示在一定置信度下,以平均值 为中心,包括为中心,包括总体平均值总体平均值范围,就叫平均值的置信区间。范围,就叫平均值的置信区间。x统计学基础统计学基础(二二)nxxststnxxxx总体平均值的区间估计例:已知=

    14、35.21%,S=0.06%,n=4,求P=0.95,0.99时,平均值的置信区间解:P0.95,t0.025,3 3.18统计学基础统计学基础(二二)0.063.18%35.210.10%4(35.21)()理解为:在区间 中包括总体平均值的把握(概率)有95。P0.99 t0.005,3?35.21 0.18%()总体平均值的区间估计统计学基础统计学基础(二二)置信度越高,置信度越高,t曲线下面积越大,置信区间就越大,即所估曲线下面积越大,置信区间就越大,即所估计的区间包括真值的可能性也就越大。但计的区间包括真值的可能性也就越大。但P100,则,则意味着区间无限大,肯定会包括,这样的区间毫

    15、无意义;意味着区间无限大,肯定会包括,这样的区间毫无意义;分析中通常将分析中通常将P定在定在95或或90。例例1 测某铁矿样中的含量,得:测某铁矿样中的含量,得:37.45%,37.30,37.20,37.50,37.25,报告分析结果,报告分析结果(P=95%)例例2 测定结果测定结果47.64%、47.69%、47.52%、47.55%,计算置信度为,计算置信度为90%、95%、99%时总体时总体平均值平均值 的置信区间?的置信区间?测定结果不确定度和分析结果的表达统计学基础统计学基础(二二)x一般分析结果的统计表示法一般分析结果的统计表示法 多次重复测定得到一系列测定值,在报多次重复测定

    16、得到一系列测定值,在报告分析结果时,要反映出数据的集中趋势和分告分析结果时,要反映出数据的集中趋势和分散性,一般采用下列四项值,散性,一般采用下列四项值,x是总体是总体的的最佳估计值,反映数据的集中趋势。最佳估计值,反映数据的集中趋势。S是是 的估计值,反映数据的离散程度。测定次的估计值,反映数据的离散程度。测定次数数n用于求自由度用于求自由度f,反映数据的可靠程度。,反映数据的可靠程度。置信区间。置信区间。有效数字的取舍o 记录一个测量值时记录一个测量值时,数据中只应保留一位不确定的数字数据中只应保留一位不确定的数字.o 有效数字有效数字:包括全部可靠数字及一位不确定数字在内的包括全部可靠数

    17、字及一位不确定数字在内的所有数字所有数字o 运算中采取四舍六入五成双的原则舍去多于数字运算中采取四舍六入五成双的原则舍去多于数字o 几个数相加减时几个数相加减时,有效数字的位数决定于绝对误差最大有效数字的位数决定于绝对误差最大的一个数的一个数.o 几个数相乘除时几个数相乘除时,以有效数字位数最少以有效数字位数最少(相对误差最大相对误差最大)的为标准的为标准.在乘在乘,除除,开方开方,乘方时乘方时,若第一位有效数字等若第一位有效数字等于于8 8或大于或大于8 8时时,则有效数字可多记一位则有效数字可多记一位(如如8.01ml,8.01ml,可计可计为四位为四位)o 常数可认为无限位常数可认为无限

    18、位.对数如对数如pH=2.00pH=2.00统计学基础统计学基础(二二)有效数字的取舍o 正确记录有效数值正确记录有效数值(万分之一天平万分之一天平,50ml,50ml移液管移液管)o 正确计算和表达分析结果正确计算和表达分析结果(先计算先计算,后修约后修约;先修约先修约,后计后计算算)0.0124+20.12+1.236+3.245+4.255=?0.0124+20.12+1.236+3.245+4.255=?0.0124 0.0124*20.1420.14*1.2364=?1.2364=?P41-11P41-11统计学基础统计学基础(二二)误差的传递一、系统误差的传递规律一、系统误差的传递

    19、规律1.加减法:设加减法:设R为计算结果,为计算结果,A、B、C为三个测量数据,为三个测量数据,它们的绝对系统误差为它们的绝对系统误差为EA、EB、EC,对分析结果,对分析结果的绝对系统误差为的绝对系统误差为ER,其计算关系式为:,其计算关系式为:结果的绝对误差是各步骤结果的绝对误差是各步骤绝对误差绝对误差的代数和的代数和CBAREEEECBAR统计学基础统计学基础(二二)CBAREmEEECmBAR若则若则误差的传递一、系统误差的传递规律一、系统误差的传递规律统计学基础统计学基础(二二)CEBEAERECBARCABmRCABR误差的传递例:X=(A-C)/G 已知:EA=EC=0.1 EG

    20、=0.001A=80.0 C=1.0 G=1.0 求X,EX,X校正各为多少?解:X=79.0 EA-C=EA-EC=0统计学基础统计学基础(二二)误差的传递一、系统误差的传递规律一、系统误差的传递规律统计学基础统计学基础(二二)AEnREmARARnAEmEAmRAR434.0lg误差的传递一、偶然误差的传递规律统计学基础统计学基础(二二)22222222222CBARCBARscsbsascCbBaARssssCBAR2.乘除法结果的相对标准偏差的平方是各测量值相对标准偏差的平方总和22222222CsBsAsRsCBARCABmRCABR 3.指数关系AsnRsAsnRsmARARARn

    21、或2224.对数关系AsmsAmRAR434.0lg例例 设天平称量时的标准偏差设天平称量时的标准偏差s=0.10mg,求称量,求称量试样时的标准偏差试样时的标准偏差sm?解:称量质量解:称量质量m是称量两次的差值是称量两次的差值mgssssm14.010.022222221例例 移取移取NaOH溶液溶液25.00mL,用,用0.1000molL-1 HCl标准溶标准溶液滴定消耗液滴定消耗30.00mL。已知移取时。已知移取时s1=0.02mL,每次读,每次读取滴定管读数时取滴定管读数时s2=0.01mL,计算标定,计算标定NaOH溶液时的溶液时的标准偏差标准偏差sc?解解:11200.0LmolVVccNaOHHClHClNaOH122222121220001.02LmolsVsVscscNaOHcP22,1-17,1-18作业P41:1,4,5

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:实验设计与优化-统计学基础课件.ppt
    链接地址:https://www.163wenku.com/p-4307604.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库