大学精品课件:D8-9二元泰勒公式.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《大学精品课件:D8-9二元泰勒公式.ppt》由用户(金钥匙文档)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 大学 精品 课件 D8_9 二元 泰勒 公式
- 资源描述:
-
1、,*第九节,一、二元函数泰勒公式,二、极值充分条件的证明,机动 目录 上页 下页 返回 结束,二元函数的泰勒公式,第八章,一、二元函数的泰勒公式,一元函数,的泰勒公式:,推广,多元函数泰勒公式,机动 目录 上页 下页 返回 结束,记号,(设下面涉及的偏导数连续):,一般地,机动 目录 上页 下页 返回 结束,表示,表示,定理1.,的某一邻域内有直,到 n + 1 阶连续偏导数 ,为此邻域内任,一点,则有,其中, 称为f 在点(x0 , y0 )的 n 阶泰勒公式,称为其拉格,朗日型余项 .,机动 目录 上页 下页 返回 结束,证: 令,则,利用多元复合函数求导法则可得:,机动 目录 上页 下页
2、 返回 结束,一般地,由,的麦克劳林公式, 得,将前述导数公式代入即得二元函数泰勒公式.,机动 目录 上页 下页 返回 结束,说明:,(1) 余项估计式.,因 f 的各 n+1 阶偏导数连续,在某闭,邻域其绝对值必有上界 M ,则有,机动 目录 上页 下页 返回 结束,(2) 当 n = 0 时, 得二元函数的拉格朗日中值公式:,(3) 若函数,在区域D 上的两个一阶偏导数,恒为零,由中值公式可知在该区域上,机动 目录 上页 下页 返回 结束,例1. 求函数,解:,的三阶泰,勒公式.,因此,机动 目录 上页 下页 返回 结束,其中,机动 目录 上页 下页 返回 结束,时, 具有极值,二、极值充
3、分条件的证明,的某邻域内具有一阶和二阶连续偏导数, 且,令,则: 1) 当,A 0 时取极大值;,A 0 时取极小值.,2) 当,3) 当,时, 没有极值.,时, 不能确定 , 需另行讨论.,若函数,定理2 (充分条件),机动 目录 上页 下页 返回 结束,证: 由二元函数的泰勒公式, 并注意,则有,所以,机动 目录 上页 下页 返回 结束,其中 , , 是当h 0 , k 0 时的无穷小量 ,于是,(1) 当 ACB2 0 时,必有 A0 , 且 A 与C 同号,可见 ,从而z0 ,因此,机动 目录 上页 下页 返回 结束,从而 z0,(2) 当 ACB2 0 时,若A , C不全为零, 无妨设 A0,则,时, 有,异号;,同号.,可见 z 在 (x0 , y0) 邻近有正有负,机动 目录 上页 下页 返回 结束,+,+,若 AC 0 ,则必有 B0 ,不妨设 B0 ,此时,可见 z 在 (x0 , y0) 邻近有正有负,(3) 当ACB2 0 时,若 A0,则,若 A0 ,则 B0 ,为零或非零,机动 目录 上页 下页 返回 结束,此时,因此,作业 P67 1 , 3 , 4 , 5,第十节 目录 上页 下页 返回 结束,不能断定 (x0 , y0) 是否为极值点 .,
展开阅读全文